# 建设项目环境影响报告表

(生态影响类)

| 工程名称:   | 信丰  | 县古陂镇防洪工程 |
|---------|-----|----------|
| 建设单位(盖: | 章): | 信丰县水利局   |
| 编制日期:   | _(  | D二四年三月   |

中华人民共和国生态环境部制

## 目 录

| 一、建设项目基本情况1            |
|------------------------|
| 二、建设内容16               |
| 三、生态环境现状、保护目标及评价标准39   |
| 四、生态环境影响分析62           |
| 五、主要生态环境保护措施77         |
| 六、生态环境保护措施监督检查清单93     |
| 七、结论                   |
| 附图:                    |
| 附图一 工程地理位置图;           |
| 附图二 工程总平面布置图;          |
| 附图三 工程河岸沿线主要环境保护目标分布图; |
| 附图四 江西省生态功能区划图;        |
| 附图五 信丰县生态保护红线划定范围图;    |
| 附图六 引用地表水环境现状监测布点图;    |
| 附图七 环境现状监测布点图;         |
| 附图八 区域水系图;             |
| 附图九 工程区域植被覆盖图;         |
| 附图十 施工期生态保护措施平面布置图;    |
| 附图十一江西省主体功能区划位置示意图。    |

## 附件:

附件 1 技术咨询服务合同书;

附件 2 江西省水利厅关于防汛抗旱水利提升中小河流治理信丰县古陂镇防洪工程 初步设计报告的批复:

附件 3 法人证书;

附件 4 信丰县自然资源局《关于防汛抗旱水利提升中小河流治理信丰县嘉定镇龙 舌河段防洪工程、古陂镇防洪工程的用地预审与选址意见》;

附件 5 环境现状检测报告;

附件 6 引用地表水环境现状检测报告。

# 一、建设项目基本情况

| 建设工程名称                    |                                           | 信丰县古陂镇防洪工                           |                                                               |  |  |  |  |
|---------------------------|-------------------------------------------|-------------------------------------|---------------------------------------------------------------|--|--|--|--|
| 工程代码                      |                                           | 2107-360722-04-01-360499            |                                                               |  |  |  |  |
| 建设单位联系人                   |                                           |                                     |                                                               |  |  |  |  |
| 建设地点                      | 江西省赣州市信丰县古陂镇境内东河中游(上起黎明村老克潭<br>下止古陂村古陂新桥) |                                     |                                                               |  |  |  |  |
| 地理坐标                      |                                           | 15°7′36.296″,北纬<br>115°5′45.788″,北纬 | 25° 20′ 44.107″, 终点地<br>25° 20′ 7.583″。                       |  |  |  |  |
| 建设工程<br>行业类别              | 51-127 防洪除涝工<br>程                         | 用地面积(m²)                            | 约 18466.76(约 27.7<br>亩)                                       |  |  |  |  |
| 建设性质                      | ☑ 新建(迁建)<br>□改建<br>□扩建<br>□技术改造           | 建设工程<br>申报情形                        | ☑ 首次申报工程<br>□不予批准后再次申报<br>工程<br>□超五年重新审核工程<br>□重大变动重新报批工<br>程 |  |  |  |  |
| 工程审批(核准/<br>备案)部门(选<br>填) | 江西省水利厅                                    | 工程审批(核准/<br>备案)文号(选填)               | 赣水建管字〔2022〕131<br>号                                           |  |  |  |  |
| 总投资 (万元)                  | 938.42                                    | 环保投资 (万元)                           | 23.64                                                         |  |  |  |  |
| 环保投资占比 (%)                | 2.52                                      | 施工工期                                | 12 个月                                                         |  |  |  |  |
| 是否开工建设                    | ☑ 否<br>□是:                                |                                     |                                                               |  |  |  |  |
| 专项评价设置情况                  | (试行)》表1专项i<br>泥存在重金属污染,                   | 评价设置原则表可知,                          | 术指南(生态影响类)<br>本工程不涉及清淤且底<br>置原则,因此不设置地表<br>「境风险专项评价。          |  |  |  |  |
| 规划情况                      | 无                                         |                                     |                                                               |  |  |  |  |
| 规划环境影响<br>评价情况            | 无                                         |                                     |                                                               |  |  |  |  |
| 规划及规划环境影响评价符合性分析          |                                           | 无                                   |                                                               |  |  |  |  |

## 1、产业政策符合性

本工程为防洪工程,根据中华人民共和国国家发展和改革委员会令第 29 号《产业结构调整指导目录(2019 年本)》可知,本工程属于鼓励类中第二款水利的第 1 条 "江河湖海堤防建设及河道治理工程"和第 6 条 "江河湖库清淤疏浚工程"类别。本工程已获得《江西省水利厅关于防汛抗旱水利提升中小河流治理信丰县古陂镇防洪工程初步设计报告的批复》(赣水建管字(2022)131号),另外根据查询国家发改委、国土资源部《限制用地工程目录(2012 年本)》和《禁止用地工程目录(2012 年本)》可知,本工程均不属于此类限制和禁止工程,因此,本工程符合国家产业政策。

## 2"三线一单"相符性分析

#### ①生态红线

其他符合性分析

本工程位于江西省赣州市信丰县古陂镇境内东河中游(上起黎明村老克潭,下止古陂村古陂新桥),工程用地范围均不在名胜古迹、风景名胜区、自然保护区、饮用水源保护区范围内,依据《江西省人民政府关于发布江西省生态保护红线的通知》(赣府发〔2018〕21 号〕和信丰县生态保护红线划定范围图可知,本工程不在生态保护红线划定范围内,因此符合生态保护红线的要求。

## ②环境质量底线

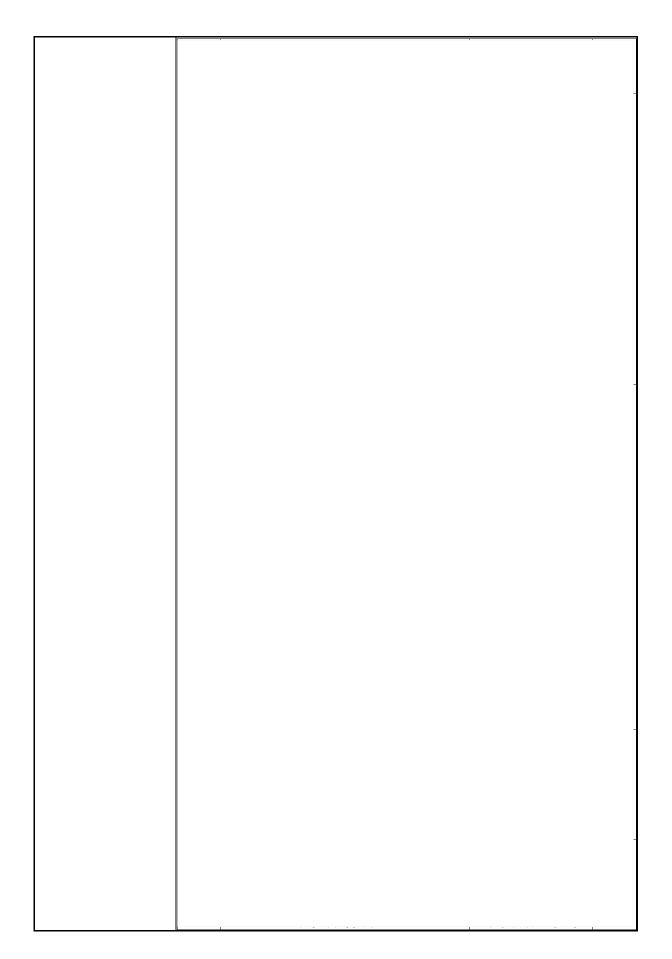
根据《长江经济带战略环境评价江西省"三线一单"研究报告》、《长江经济带战略环境评价江西省赣州市"三线一单"划定技术报告》,对信丰县大气环境质量、水环境质量、土壤环境风险防控提出了底线要求,将有关要求梳理如下:

表 1-1 江西省、赣州市"三线一单"中关于信丰县环境质量底线目标

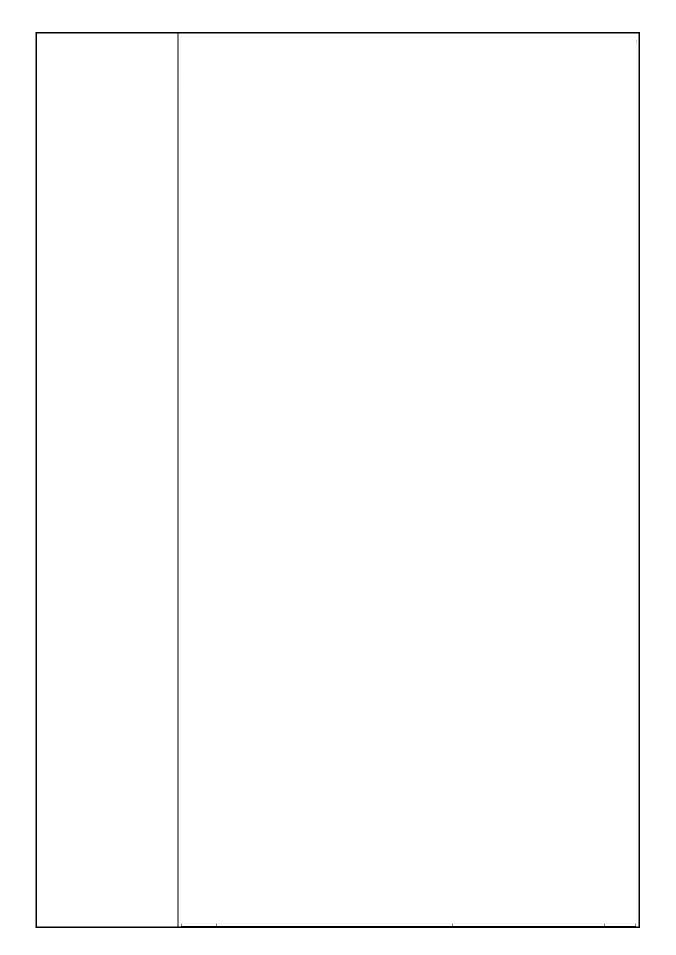
| 环    | ·<br>境质量底线要 | 菜            | 2020年     | 2025年     | 2035年     |
|------|-------------|--------------|-----------|-----------|-----------|
| 大气环境 |             | E度目标<br>/m³) | 满足二类<br>区 | 满足二类<br>区 | 满足二类<br>区 |
| 质量底线 | 大气污染        | $SO_2$       | 5812      | 5678      | 5678      |

|             | 物允许排<br>放量     | NOx        | 3726                 | 3603          | 3603           |
|-------------|----------------|------------|----------------------|---------------|----------------|
|             | (t/a)          | 一次细颗<br>粒物 | 3251                 | 3186          | 3186           |
|             |                | VOCs       | 739                  | 716           | 716            |
|             |                | 氨          | 899                  | 884           | 884            |
|             | 断面             | 名称         | 2020年                | 2025年         | 2035年          |
|             | 赣县立濑林<br>丰出境   |            | III类                 | III类          | III类           |
| 水环境质<br>量底线 | 2020           | 0年农业灌溉     | 水有效利用                | 系数            | 0.5            |
| 至/M/A       |                | 削指标(亿      | 2017年用<br>水总量        | 2020年用<br>水总量 | 2030 年用<br>水总量 |
|             | $m^3$          | )          | 2.84                 | 2.93          | 2.95           |
| 土壤环境风险防控    | 受污染耕地安全利用<br>率 |            | 达到省政<br>府下达的<br>指标要求 | -             | 95%            |
| 底线          | 污染地块多          | 安全利用率      | 90%                  | -             | 95%            |

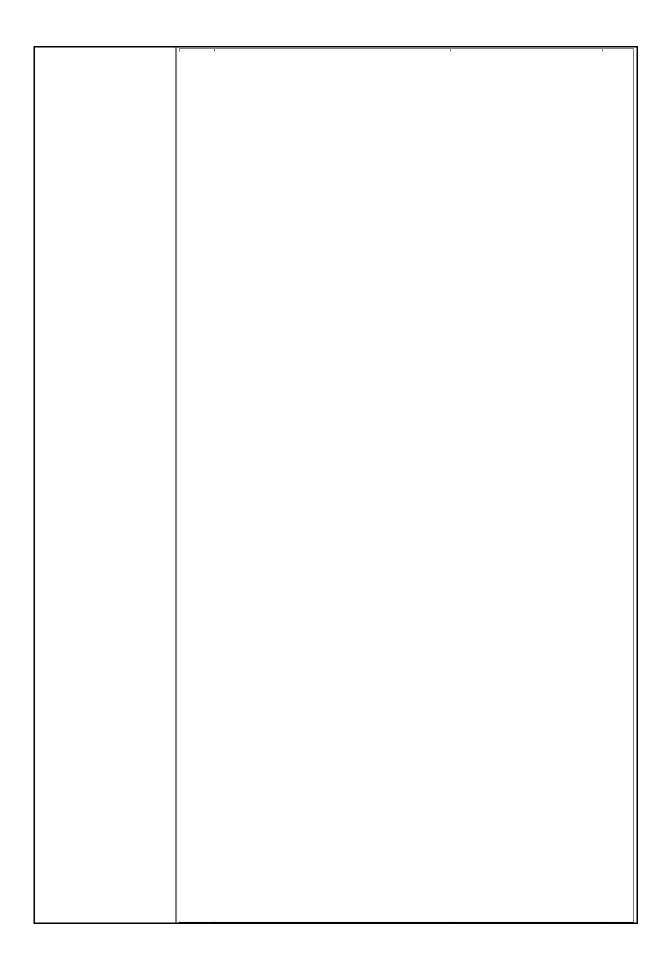
根据《赣州市 2023 年 11 月地表水监测月报》可知,信丰东河断面水质现状已达到II 类水质的要求。大气环境质量底线:根据江西省生态环境厅发布的 2022 年江西省各县(市、区)六项污染物浓度年均值可知,信丰县的六项污染物浓度年均值满足《环境空气质量标准》(GB3095-2012)表 1 中二级标准要求,工程区域属于达标区。工程周边无重大噪声源,根据本次声环境质量现状监测结果,区域声环境满足《声环境质量标准》(GB3096-2008)中 2 类功能区。综上所述,本工程的建设不会对当地环境质量底线造成冲击。

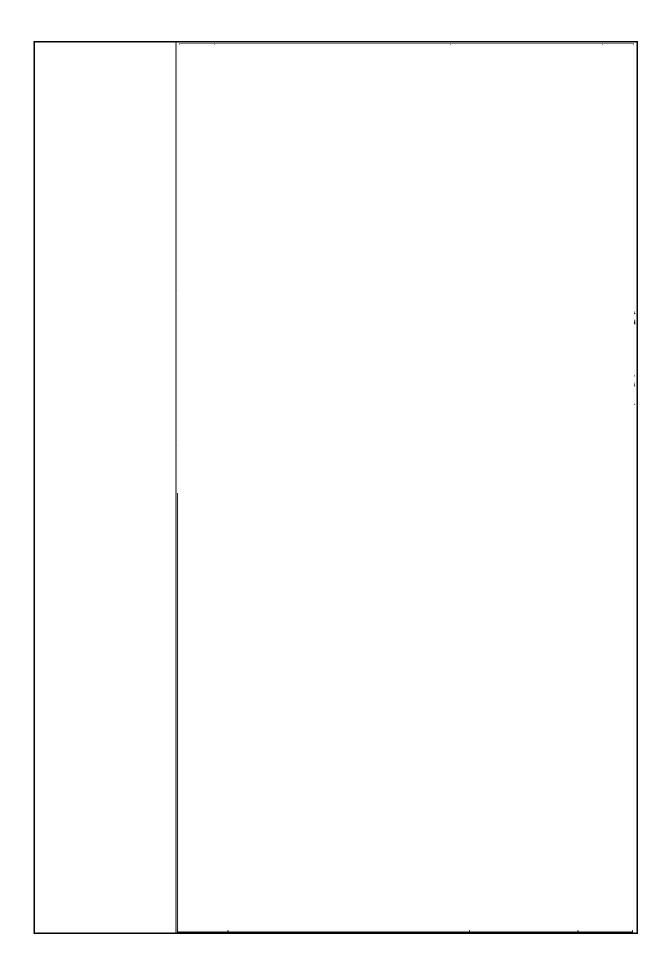

## ③资源利用上线

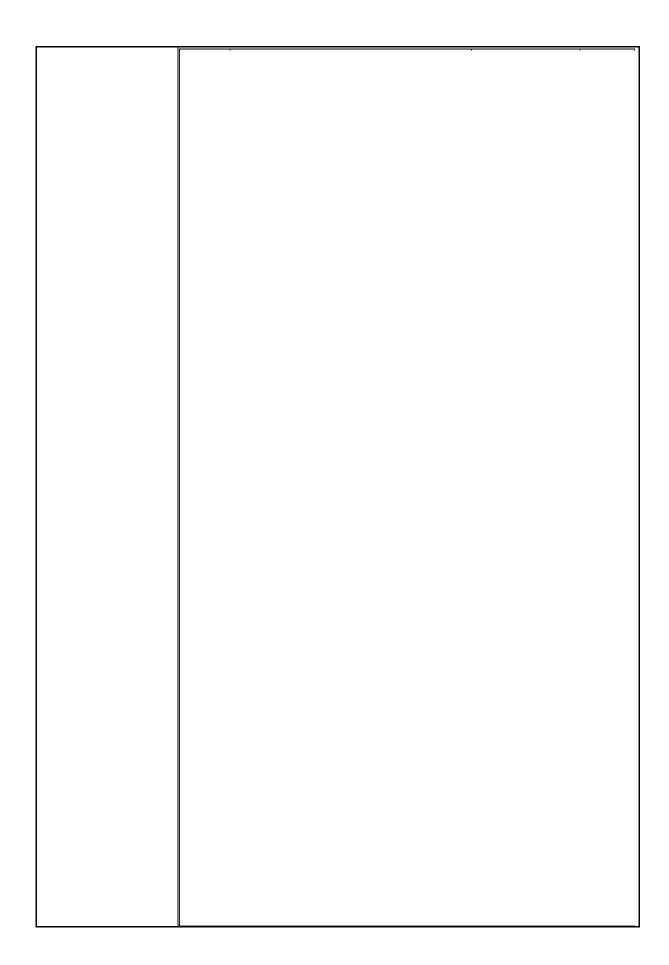
本工程利用资源主要为土地资源,且用地符合当地规划,另外工程施工用水来源于东河,生活用水为桶装矿泉水,用电采用乡镇电网供电,运营期无能源消耗,因此本工程不会突破区域的资源利用上线。

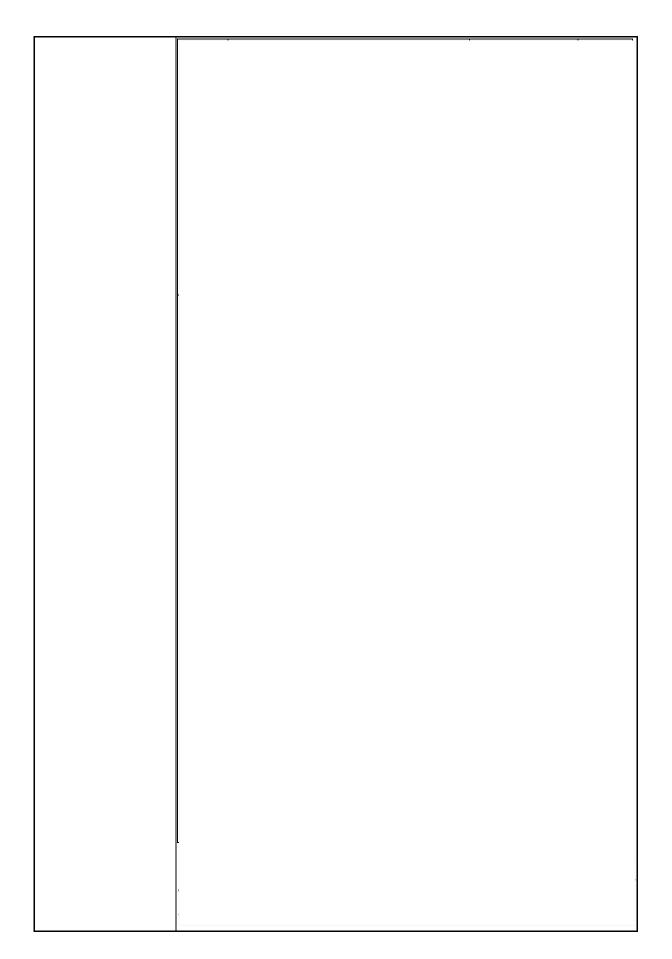

#### ④环境准入负面清单

根据赣州市人民政府关于印发《赣州市"三线一单"生态环境 分区管控方案的通知》(赣府发[2020]95 号)和赣州市生态环境保护 委员会办公室关于印发《赣州市生态环境总体准入要求》及《赣 州市环境管控单元生态环境准入清单》的通知(赣市环委办字 【2021】5号)可知,本工程选址于江西省赣州市信丰县古陂镇 境内,工程所在环境管控单元编码为 ZH36072210003,属于优先 保护单元,具体详见赣州市环境综合管控单元分布图,本工程与 《赣州市生态环境总体准入要求》及《赣州市环境管控单元生态 环境准入清单》相符性分析详见下表。

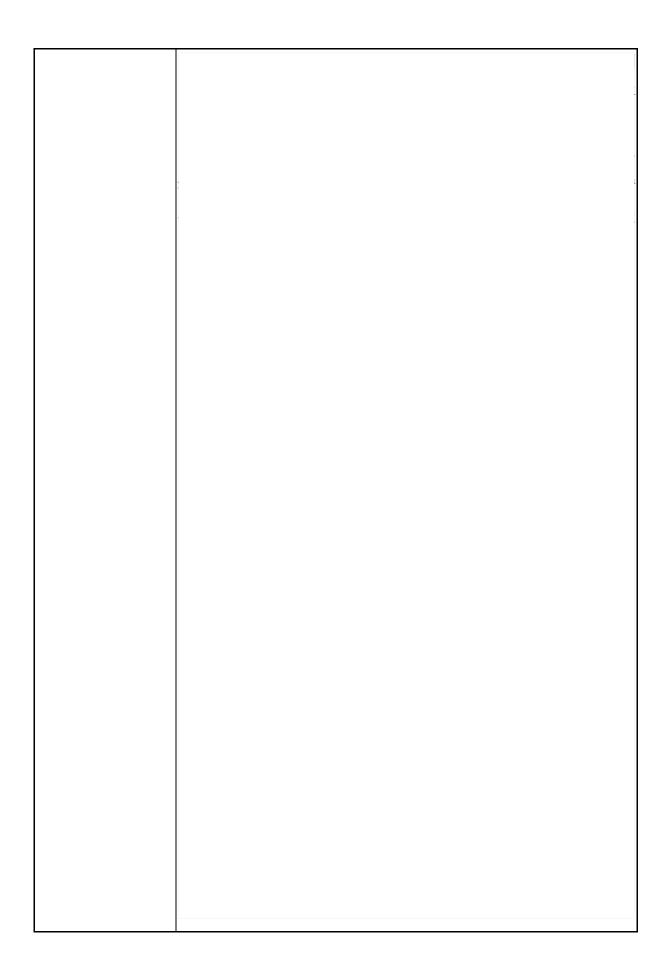

|   |      | <br> | <br> | <br> | <br> | ٠., |
|---|------|------|------|------|------|-----|
| 1 |      |      |      |      |      | ì   |
|   |      |      |      |      |      | Ì   |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | ſ    |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | 1    |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | :    |      |      |      |      | -   |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | 1    |      |      |      |      | -   |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | Ī    |      |      |      |      | Ī   |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   | II . |      |      |      |      |     |
|   |      |      |      |      |      |     |
|   |      |      |      |      |      |     |





| <u> </u> |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
| L .      |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
| u l      |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |




|  |  |  | , |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |










| 1   |          |
|-----|----------|
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     | <u> </u> |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
| 1   |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
| 1   |          |
| 1   |          |
| 1   |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
| 1   |          |
| 1   |          |
| 1   | ,        |
|     |          |
|     |          |
|     |          |
|     |          |
| 1   |          |
| 1   |          |
|     |          |
|     |          |
| Í . |          |



# 二、建设内容

地理 位置 本工程位于江西省赣州市信丰县古陂镇境内东河中游(上起黎明村老克潭,下止古陂村古陂新桥)。起点地理坐标为东经 115°7′36.296″,北纬25°20′44.107″。终点地理坐标为东经 115°5′45.788″,北纬 25°20′7.583″,东河属于桃江一级支流,工程治理河段地处老克潭至古陂新桥河段,东河在该段工程区内河道蜿蜒曲折,河宽一般为 20~50m,其中圩镇段河宽达 100m。沿河两岸地势大部分较平坦开阔。天然河岸岸坡坡度一般为25~35°,坡高一般为2~5m。具体工程地理位置见附图一。

## 1、工程内容组成

本工程河道综合整治总长 4.007km,建设内容主要包括:清淤疏浚整治长 0.797km; 固脚护岸总长 2.153km,其中干砌石护坡+抛石固脚护岸长 0.895km,抛石固脚护岸长 0.881km,混凝土生态挡墙 0.377km,新建游步道 0.777km,新建排水涵管 1 座,新建下河步阶 6 处。具体工程组成见表 2-1。

## 表 2-1 工程内容组成一览表

| 工 | 程 |
|---|---|
| 组 | 成 |
| 及 | 规 |
| 木 | 其 |

|  | 工程   | 工程名称 |                 | 工程内容与规模                                                                                                                                                                                                                                                                                                                         |
|--|------|------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |      | 综合   | 合治理河<br>段       | 本工程河道综合整治总长 4.007km, 护岸范围: 左岸上起古陂村响塘坑, 下止古陂新桥; 右岸上起黎明村刘屋, 下止李树下。                                                                                                                                                                                                                                                                |
|  |      |      | 河道清<br>淤疏浚<br>区 | 对工程范围内局部阻水边滩进行疏浚,重点疏浚整治范围为 K 河 2+615~K 河 3+412,长度为 0.797km。                                                                                                                                                                                                                                                                     |
|  | 主体工程 | 其中   | 河岸固脚护岸          | 工程固脚护岸总长 2.153km,其中干砌石护坡+抛石固脚护岸长 0.895km(范围为 K 东左 2+276 $^{\circ}$ K 东左 2+568、K 东左 3+168 $^{\circ}$ K 东左 3+277、K 东右 2+282 $^{\circ}$ K 东右 2+532、K 东右 3+297 $^{\circ}$ K 东右 3+541),抛石固脚护岸长 0.881km(范围为 K 东左 2+709 $^{\circ}$ K 东左 3+168、K 东右 2+875 $^{\circ}$ K 东右 3+297),混凝土生态挡墙 0.377km(范围为 K 东左 3+642 $^{\circ}$ K 东左 4+019)。 |
|  |      |      | 新建游步道           | 新建游步道 0.777km,在东河左岸圩镇段设置游步道,游步道为<br>圩镇下至古陂新桥,古陂老桥以上段上起古陂中学围墙,下止古<br>陂新桥,范围为 K 路 0+000~K 路 0+499、K 路 0+506~K 路<br>0+784。                                                                                                                                                                                                         |
|  |      |      | 新建排水涵管          | 新建排水涵管 1 座,为直径 1.0m 的砼圆管,涵管的管址位于东<br>江左岸I级阶地上,附近为农田庄稼地,地形较平坦,桩号为 K<br>路 0+350。                                                                                                                                                                                                                                                  |
|  | 辅助   | 下    | 河步阶             | 新建下河步阶6处,拟在沿河两岸共设置6个下河踏步并且在每个下河踏步旁边设置警示牌。                                                                                                                                                                                                                                                                                       |
|  | 工程   | 河ì   | 道垃圾清<br>除       | 河道垃圾清除河段为 K 河 $0+026\sim$ K 河 $0+100$ 和 K 河 $0+393\sim$ K 河 $0+444$ ,清除面积分别为 $420\text{m}^2$ 和 $659\text{m}^2$ 。                                                                                                                                                                                                                |

|          | 表土临时堆<br>场 | 表土临时堆场位于桩号 K 东左 3+068~ K 东左 3+168 段河滩地, 配套设有隔油池和沉淀池                                                                       |
|----------|------------|---------------------------------------------------------------------------------------------------------------------------|
| 临时<br>工程 | 取土场        | 依托信丰县城南花园西南面处空地建设开发过程中开挖产生的弃<br>土方,不单独设置取土场。                                                                              |
|          | 弃土场        | 本工程开挖、疏浚料全部用于回填沿岸洼地,无弃渣外运,不单<br>独设置弃土场。                                                                                   |
|          | 施工便道       | 施工场内需修临时道路 2km,为双车道砼路面,路面宽 6m。                                                                                            |
|          | 废气         | ①设置洒水抑尘设施;②工地周边围挡;③施工现场地面硬化,出入车辆冲洗;④物料堆放遮盖;⑤混凝土搅拌场所需设置除尘设施,骨料堆场采取遮盖、洒水等防尘措施;⑥渣土车辆实行遮盖,不得超载。⑦施工机械设备和柴油发电机安装尾气净化器,不得使用劣质燃料。 |
| 环保 工程    | 废水         | ①施工生活污水通过依托租用化粪池处理后,用作周边农田的肥料,施工废水设置隔油、中和、沉淀池收集处理设施处理后回用,不外排。②选择枯水期施工,采取截断围堰的施工方式分段进行施工,同时避开雨期施工                          |
|          | 噪声         | 合理布局施工现场、合理安排施工时间、设置临时施工噪声隔声<br>屏障、加强环境管理                                                                                 |
|          | 固体废物       | ①建筑垃圾运至指定地点或垃圾填埋场作填埋处理;②生活垃圾交由环卫集中处理;③油污、含油抹布及手套交由危废资质单位集中处理。                                                             |

## 2、工程等别和治理标准

本工程保护人口 0.63 万人,保护耕地面积 0.2 万亩。根据《防洪标准》 (GB50201—2014),本工程等别为 V等。根据《堤防工程设计规范》 (GB50286—2013)的规定,护岸工程的级别为 5 级,治理标准为 10 年一遇。

根据《水利水电工程合理使用年限及耐久性设计规范》(SL654—2014), 本工程为防洪工程,工程等别为V等,工程合理使用年限为 30 年,建筑物合理使用年限为 30 年。

#### 3、工程用地规模

本工程用地面积约为 27.7 亩, 其中农用地 9.9 亩 (含耕地 6.9 亩)、建设用地 1.5 亩、未利用地 16.3 亩, 项目选址不涉及永久基本农田和生态保护红线。

## 4、工程任务

本工程的任务是以河道清淤清障为主、兼顾水生态环境治理,对防洪隐患大,保护对象相对重要的部分重点河段实施治理,有效保障沿河重要对象的防洪安全。结合本次河道两岸现场查看的实际情况,确定本次项目治理河段总长约 4.007km,主要为河道疏浚整治、新建护岸等组成。工程的任务即通过以

上工程措施保证治理河道的河势稳定,提高本治理河段的防洪减灾能力,以保护治理区内的人民生命财产安全。

## 5、工程建设内容情况

本工程治理河道总长度 4.007km, 河道疏浚、整治后, 主河床坡降不变。

## (1) 河道清淤疏浚工程

本工程河道疏浚整治以不改变治理河段的河道比降及天然河道走势为原则,对列入疏浚范围河道进行疏浚整治,为保障主河槽过流断面,本次拟对0.797km 阻水边滩进行疏浚。疏浚原则为:对东河河槽宽度应不小于30m。主要内容为阻水边滩进行切滩,以形成较顺直的过流主河槽,在河道中心两侧设左右2条清淤疏浚整治线,2条清淤整治线以不小于30m控制。河道疏浚整治结合河岸防护一起实施。

本工程治理河段疏浚整治后东河的河床高程为 157.90m~155.00m,最小河宽为 30m,具体疏浚整治情况见下表。

 序号
 疏浚范围
 疏浚长度 (m)
 疏浚深度 (m)

 1
 K河 2+615~K河 3+412
 797
 3~5

 疏浚整治河岸总长 0.797km

表 2-2 疏浚整治河道情况表

## (2) 河岸固脚护岸工程

本工程河道治理范围自老克潭起,经浪石头、刘屋、古陂圩镇至古陂新桥处。K河 0+000~K河 2+289, 左侧部分为山体,其余部分河段植被茂盛,抗冲刷能力较强,均属于基本稳定岸坡,维持现状。左侧岸坡内侧为公路、林园,右侧大部分为农田。K河 2+289~K河 3+512 段,左侧岸坡迎流顶冲段及居民区,右侧为为农田,岸线被洪水掏蚀严重,抗冲刷能力差,现状岸线由于历史采沙原因,岸坡被毁且遗留沙坑。K河+512~K河 4+007 段,左岸为古陂圩镇及居民区,右岸为居民区,部分已做挡墙护岸,其余部分为泄洪区,均属于基本稳定岸坡,维持现状。

本工程护岸加固根据治理河段现状险情及各段河岸所处地形地质,确定的防护原则为:以不影响上、下游、左右岸且有利于行洪原则,结合类似工程护岸处理经验,主要采取平顺护岸形式进行处理,以稳定岸坡,具体情况详见下表。

表 2-3 岸坡现状及加固情况统计表

| 位置 | 起止桩号                            | 岸长<br>(km) | 现状情况                                  | 处理措施           |
|----|---------------------------------|------------|---------------------------------------|----------------|
|    | K 东左 0+000.000~<br>K 东左 2+276   | 2.276      | 河岸植被发育,局部山体,抗冲<br>刷能力较强,均属于基本稳定岸<br>坡 | 维持现状           |
|    | K 东左 2+276~K 东<br>左 2+568       | 0.292      | 流顶冲段,边坡较陡、植被差、<br>抗冲刷能力差              | 干砌石护岸+抛<br>石固脚 |
|    | K 东左 2+568~K 东<br>左 2+709       | 0.141      | 植被发育,抗冲刷能力较强,均<br>属于基本稳定岸坡            | 维持现状           |
| 左岸 | K 东左 2+709~K 东<br>左 3+168 0.459 |            | 岸坡迎流顶冲段,边坡较陡、植<br>被差、抗冲刷能力差           | 抛石固脚           |
|    | K 东左 3+168~K 东<br>左 3+277 0.109 |            | 岸坡临近村庄、岸线被洪水掏蚀<br>严重,抗冲刷能力差           | 干砌石护岸+抛<br>石固脚 |
|    | 东 K 东左 3+277~<br>东 K 东左 3+642   | 0.365      | 该岸线为凸岸岸坡,岸线局部岸<br>坡被人为损坏              | 维持现状<br>局部岸坡整治 |
|    | K 东左 3+642~K 东<br>左 4+019       | 0.377      | 岸坡临近居民房屋,边坡较陡、<br>植被差、抗冲刷能力差          | 砼生态挡墙          |
|    | K 东右 0+000.000~<br>K 东右 2+532   | 2.532      | 岸坡植被发育,抗冲刷能力较<br>强,均属于基本稳定岸坡          | 维持现状           |
|    | K 东右 2+282~K 东<br>右 2+532       | 0.25       | 边坡较陡、植被差、抗冲刷能力<br>差                   | 干砌石护岸+抛<br>石固脚 |
| 右岸 | K 东右 2+532~K 东<br>右 2+875       | 0.343      | 河岸较远、岸坡基本稳定                           | 维持现状           |
|    | K 东右 2+875~K 东<br>右 3+297       | 0.422      | 岸脚被掏蚀严重,抗冲刷能力差                        | 抛石固脚           |
|    | K 东右 3+297~K 东<br>右 3+541       | 0.244      | 岸线被掏蚀严重,抗冲刷能力差                        | 干砌石护岸+抛<br>石固脚 |

治理河段具体采用的护岸型式详见表 2-4。

表 2-4 东河河岸固脚护岸措施情况表

| 序号 | 起止桩号(m)               | 长度(m) | 护岸型式    | 备注 |
|----|-----------------------|-------|---------|----|
| 1  | K 东左 2+276~K 东左 2+568 | 292   |         |    |
| 2  | K 东左 3+168~K 东左 3+277 | 109   | 干砌石护坡+抛 | /  |
| 3  | K 东右 2+282~K 东右 2+532 | 250   | 石固脚     |    |
| 4  | K 东右 3+297~K 东右 3+541 | 244   |         |    |
| 5  | K 东左 2+709~K 东左 3+168 | 459   | 抛石固脚    |    |
| 6  | K 东右 2+875~K 东右 3+297 | 422   | 抛石固脚    |    |
| 7  | K 东左 3+642~K 东左 4+019 | 377   | 混凝土生态挡墙 |    |
| 合计 | ·                     | 2.153 |         |    |

固脚护岸总长 2.153km, 其中干砌石护坡+抛石固脚护岸长 0.895km, 抛石固脚护岸长 0.881km, 混凝土生态挡墙 0.377km

根据本工程的护岸范围:结合类似工程防护处理经验,考虑河道枯水位,并与乡镇(村)规划相协调,确定本工程护岸型式坡式护岸采用干砌石护岸和 抛石固脚、以及部分生态挡墙;干砌石护岸顶采用草皮护岸。结合类似工程护岸处理经验,C20 砼生态挡墙占地少,对当地人民的生产生活影响更小及护岸效果好等因素,本工程对靠近居民区的河段,采用 C20 砼生态挡墙护岸;考虑到干砌石施工简单、块石适应性强,一次性投资较少,护岸效果较好,因此河道较顺直且较平缓河岸采用干砌石护岸。

对干砌石护坡抛石固脚的河岸,先按 1:2.0 进行削坡整治后(现有河岸缓于 1:2.0 则维持现状)采用干砌石护岸,干砌石护岸底部采用抛石固脚体,固脚体应深入河床 1.2m,固脚体底宽 1.0m,内外边坡坡比均为 1:1.0,抛石固脚顶高程同枯水位。干砌石护坡采用高度为 1.5m,干砌石护坡坡比为 1:2.0。

对 K 东左 2+709~K 东左 3+168、K 东右 2+875~K 东右 3+297 段使用抛石固脚方案,固脚顶高程采用常水位+0.5m,抛石底部平河床高程。固脚体底宽 1.0m,内外边坡坡比均为 1:1.0。

对 C20 砼生态挡墙护岸的河岸,采用 2 种高度,其中桩号 K 东左 3+642~K 东左 3+738 段为结合游步道设计需要,该段生态挡墙高 4.08m,砼 生态挡墙为素砼结构,为 9 层砼砌块砖和 C20 砼基础组成。挡墙背水侧采用 土方回填。桩号 K 东左 3+745~K 东左 4+019 段生态挡墙高度为 1.5m。砼生态挡墙为素砼结构,为 3 层砼砌块砖、生态压顶块和 C20 砼基础组成,砼砌块砖高出河床 1.5m,每个砼砌块砖留有生态种植孔。第一层砌块砖与砼基础钢筋连接,砖内留有钢筋孔,摆放第一层砖后在第一层锚固孔置入锚固钢筋并浇灌混凝土,后放置第二层砌砖,第三层砌砖同第二层做法,上游段生态挡墙以此类推循环该做法。按抗冲刷深度要求,砼基础深入河床 1.2m。

#### (3) 下河踏步

本次治理工程拟在沿河两岸共设置 6 个下河踏步,并且在每个下河踏步旁边设置警示牌,踏步宽 2.0m,坡比为 1:2.0,采用浆砌石结构,浆砌石踏步厚 0.20m,下设 0.1m 厚砂砾石垫层。

#### (4) 游步道

本工程在东河左岸圩镇段设置游步道,新建游步道上起古陂中学围墙,下止古陂新桥,桩号为 K 路 0+000~K 路 0+784,新建游步道总长 0.777km。 其中古陂老桥以上段桩号 K 路 0+000~K 路 0+499 段地势低洼,该段范围有集镇、居民区,区域范围内有学校及圩镇,地理位置十分重要,为当地群众提供出行便利建设游步道。

游步道路身采用粘土填筑及生态挡墙型式。 K 路 0+000~K 路 0+403 段为粘土填筑型式,迎、背水坡坡比皆为 1:2.0;采用草皮护坡。 K 路 0+403~K 路 0+499 段采用生态挡墙型式结合土方填筑的型式,生态挡墙高 4.08m,砼生态挡墙为素砼结构,为 9 层砼砌块砖和 C20 砼基础组成。挡墙背水侧采用土方回填;坡比为 1:2.0,采用草皮护坡。 K 路 0+000~K 路 0+499 段采用 C25 砼路面,游步道顶宽 3.0m,顶部为 C25 砼路面(厚 200mm),下设碎石垫层(厚 150mm);古陂老桥下以下段桩号为 K 路 0+506~K 路 0+784,总长 278m,该段游步道结合砼生态挡墙护岸,依现状岸顶铺设,顶部宽 3m,采用彩色沥青透水混凝土(50mm 厚)+沥青透水混凝土(100mm 厚),底部设 C25 混凝土基层(200mm 厚)及碎石垫层(200mm 厚)。

## (5) 排水涵管

根据上游段游步道道路内水系分布和排水要求,大部分道路内侧地势高程低于外河(P=5%)水位 2~3m 不等,因此,本工程需要在新建游步道内设置自排系统就可以解决低洼地段内涝问题。在 K 路 0+350 布置 1 座排水涵管,具体详见下表。

| 表 2-5 | 排水汹管特性表 |
|-------|---------|
|       |         |

| 编号 | 涵管名称   | 桩号(m)    | 设计流量<br>(m³/s) | 管径<br>(m) | 管长 L<br>(m) | 设计纵坡 |
|----|--------|----------|----------------|-----------|-------------|------|
| 1  | 1#排水涵管 | K路 0+350 | 1.5            | 1.0       | 14          | 5%   |

## 6、工程特性表

本工程特性详见下表。

表 2-6 工程特性一览表

| 序号 | 名称               | 单位              | 数量  | 备注     |
|----|------------------|-----------------|-----|--------|
| _  | 水 文              |                 |     |        |
| 1  | 流域面积             |                 |     |        |
|    | 东河上坝水陂控制断面以<br>上 | km <sup>2</sup> | 511 | 上坝水陂以上 |

| 2  | P=10%设计洪峰流量                     | $m^3/s$        | 676           | 上坝水陂              |
|----|---------------------------------|----------------|---------------|-------------------|
| 3  | P=10%设计洪水位                      | m              | 160.73-164.54 | 上坝水陂至下村段          |
| _  | 设计标准                            |                |               |                   |
| 1  | 防洪标准                            | 频率             | 10 年一遇        |                   |
| 2  | 治涝标准                            | 频率             | 10 年一遇        |                   |
| 三  | 主要建筑物                           |                |               |                   |
| 1  | 河道整治总长                          | km             | 4.007         |                   |
| 2  | 疏浚整治总长                          | km             | 0.797         |                   |
| 3  | 固脚护岸总长                          | km             | 2.153         | 东河左、右岸            |
| 4  | 干砌石护岸+抛石固脚总<br>长                | km             | 0.895         |                   |
| 5  | 抛石固脚护岸总长                        | km             | 0.881         |                   |
| 6  | 混凝土生态挡墙                         | km             | 0.377         |                   |
| 7  | 新建游步道                           | km             | 0.777         | 东河左岸、长<br>0.499km |
| 四  | 占地                              |                |               |                   |
| 1  | 永久占地                            | 亩              | 0             |                   |
| 2  | 临时占地                            | 亩              | 27.7          |                   |
| 五. | 施工                              |                |               |                   |
| (- | 主要工程量                           |                |               |                   |
| 1  | 清淤疏浚                            | $m^3$          | 29155         |                   |
| 2  | 土方开挖                            | $m^3$          | 9875          |                   |
| 3  | 开挖料回填                           | $m^3$          | 17283         |                   |
| 4  | 粘土填筑                            | $m^3$          | 13742         |                   |
| 5  | 土石围堰填筑与拆除                       | $m^3$          | 3046          |                   |
| 6  | 砂砾石垫层                           | $m^3$          | 212           |                   |
| 7  | 抛石                              | $m^3$          | 10890         |                   |
| 8  | 干砌石                             | $m^3$          | 998           |                   |
| 9  | 生态挡墙                            | 块              | 1954          |                   |
| 10 | 混凝土                             | $m^3$          | 835           |                   |
| 11 | 砼路面                             | m <sup>2</sup> | 1997          |                   |
| 12 | 50 厚 4-6mm 粒径 沥青透<br>水混凝土(彩色)   | $m^2$          | 876           |                   |
| 13 | 100 厚 10mm 粒径 沥青透<br>水混凝土(10mm) | $m^2$          | 876           |                   |
| 14 | 200 厚 C25 混凝土基层                 | m <sup>2</sup> | 1022          |                   |
| 15 | 200 厚级配碎石垫层                     | m <sup>2</sup> | 1168          |                   |
| 16 | 草皮护坡                            | m <sup>2</sup> | 18444         |                   |
| (  | 施工总工期                           | 月              | 12            |                   |
| (三 | 施工总工时                           | 104工日          | 11.9          |                   |

# 7、建设征地移民安置规划

本工程压占耕地呈条带状分布,对当地各行政村耕地影响较小。通过一次

性货币补偿来安置生产安置人口,不涉及搬迁人口。

## 8、设计洪水水面线

本工程采用能量方程通过试算法推求河道设计水面线。以上坝水陂为计算 起始断面,由下游往上游逐断面推求河道设计洪水水面线,具体详见下表。

表 2-7 本工程所在河段设防标准 10 年一遇设计洪水水面线成果表 单位: m

| 断面编号            | 地名        | 里程   | 河底     | 高程     | 2016<br>年历史 |        | 遇设计洪<br>〈位 | 施工期<br>10-2 月 |
|-----------------|-----------|------|--------|--------|-------------|--------|------------|---------------|
|                 |           |      | 整治前    | 整治后    | 洪水          | 整治前    | 整治后        |               |
| K河<br>4+180.000 | 上坝水<br>陂  | 0    | 154.25 | 154.25 | 162.00      | 160.57 | 160.57     | 157.94        |
| K 东左<br>3+890   | 古陂桥<br>下  | 286  | 156.23 | 156.23 | 162.20      | 160.95 | 160.83     | 158.09        |
| K 东左<br>3+340   | 古陂镇       | 890  | 156.19 | 156.19 | 162.61      | 161.50 | 161.17     | 158.47        |
| K 东左<br>2+484   | 古陂镇<br>园场 | 1687 | 156.03 | 156.03 | 162.85      | 161.8  | 161.54     | 158.84        |
| K 东左<br>2+279   |           | 1887 | 156.35 | 156.35 | 162.94      | 161.9  | 161.71     | 158.91        |
| K 东左<br>1+698   | 下浪石<br>头  | 2487 | 155.80 | 155.80 | 163.47      | 162.43 | 162.22     | 159.11        |
| K 东左<br>1+095   |           | 3087 | 156.80 | 156.80 | 164.07      | 163.03 | 162.97     | 159.51        |
| K 东左<br>0+694   | 响塘坑       | 3487 | 156.27 | 156.27 | 164.57      | 163.51 | 163.51     | 159.81        |
| K 东左<br>0+078   | 老克潭       | 4087 | 157.90 | 157.90 | 165.25      | 164.13 | 164.13     | 160.24        |
|                 | 下村        | 4687 | 158.7  | 158.7  | 165.65      | 164.54 | 164.54     | 160.88        |

表 2-8 本工程游步道工程 5年一遇设计洪水水面线成果表 单位: m

| WIO TELEMONETE TO RECEIVE THE TELEMONETE THE TELEMO |           |           |        |        |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------|--------|--------|--------|
| 断面编号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 地名        | 里程        | 河底     | 高程     | 5年一遇   | 设计洪水位  |
| 四 细 句                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 地名        | <b>坐性</b> | 整治前    | 整治后    | 整治前    | 整治后    |
| K河 4+180.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 上坝水陂      | 0         | 154.25 | 154.25 | 159.80 | 159.80 |
| K 东左 3+890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 古陂桥下      | 286       | 156.23 | 156.23 | 160.12 | 160.01 |
| K 东左 3+340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 古陂镇       | 890       | 156.19 | 156.19 | 160.67 | 160.3  |
| K 东左 2+484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 古陂镇园<br>场 | 1687      | 156.03 | 156.03 | 160.97 | 160.68 |
| K 东左 2+279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1887      | 156.35 | 156.35 | 161.08 | 160.85 |
| K 东左 1+698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 下浪石头      | 2487      | 155.80 | 155.80 | 161.62 | 161.36 |

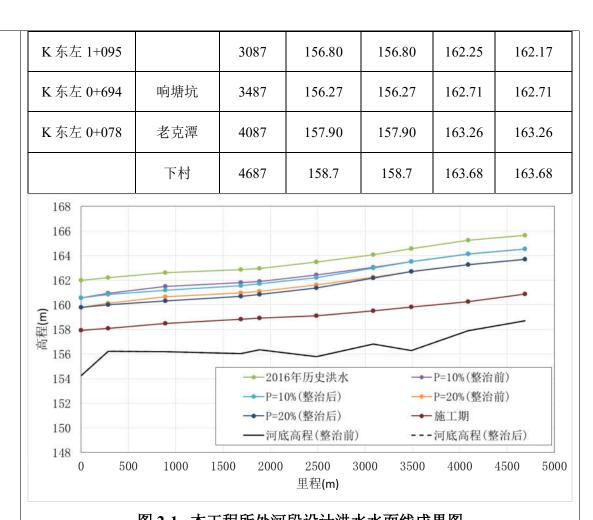



图 2-1 本工程所处河段设计洪水水面线成果图 表 2-9 本工程设计常水、枯水水面线成果表 单位: m

|  |                     |               |      | 设计常        | 常水位        |        |            | 设计柱    | 冰位         | 水位         |            |
|--|---------------------|---------------|------|------------|------------|--------|------------|--------|------------|------------|------------|
|  | 断面                  |               |      | 工程         | 前          | 工程     | 后          | 工程     | 前          | 工程         | 后          |
|  | 编号                  | 地名            | 里程   | 非灌溉期       | 灌溉期        | 非灌溉期   | 灌溉期        | 非灌溉期   | 灌溉期        | 非灌溉期       | 灌溉期        |
|  | K河<br>4+180.<br>000 | 上坝<br>水陂      | 0    | 155.8<br>5 | 156.9<br>6 | 155.85 | 156.<br>96 | 155.60 | 156.<br>96 | 155.6<br>0 | 156.<br>96 |
|  | K 东左<br>3+890       | 古陂<br>桥下      | 286  | 156.7<br>3 | 156.9<br>6 | 156.73 | 156.<br>96 | 156.57 | 156.<br>96 | 156.5<br>7 | 156.<br>96 |
|  | K 东左<br>3+340       | 古陂<br>镇       | 890  | 156.9<br>5 | 156.9<br>6 | 156.95 | 156.<br>96 | 156.81 | 156.<br>96 | 156.8<br>1 | 156.<br>96 |
|  | K 东左<br>2+484       | 古陂<br>镇园<br>场 | 1687 | 157.5      | 157.5      | 157.47 | 157.<br>47 | 157.28 | 157.<br>28 | 157.2<br>7 | 157.<br>27 |
|  | K 东左<br>2+279       |               | 1887 | 157.5<br>4 | 157.5<br>4 | 157.54 | 157.<br>54 | 157.31 | 157.<br>31 | 157.3<br>1 | 157.<br>31 |
|  | K 东左<br>1+698       | 下浪<br>石头      | 2487 | 157.6<br>2 | 157.6<br>2 | 157.62 | 157.<br>62 | 157.35 | 157.<br>35 | 157.3<br>5 | 157.<br>35 |

|        | 东左<br>+095 |         | 3087 | 157.9<br>9 | 157.9<br>9 | 157.99 | 157.<br>99 | 157.69 | 157.<br>69 | 157.6<br>9 | 157.<br>69 |
|--------|------------|---------|------|------------|------------|--------|------------|--------|------------|------------|------------|
|        | 东左<br>+694 | 响塘<br>坑 | 3487 | 158.2<br>4 | 158.2<br>4 | 158.24 | 158.<br>24 | 157.93 | 157.<br>93 | 157.8<br>3 | 157.<br>83 |
|        | 东左<br>+078 | 老克潭     | 4087 | 158.8<br>2 | 158.8<br>2 | 158.82 | 158.<br>82 | 158.53 | 158.<br>53 | 158.5      | 158.<br>53 |
|        |            | 下村      | 4687 | 159.7      | 159.7      | 159.7  | 159.<br>7  | 159.45 | 159.<br>45 | 159.4<br>5 | 159.<br>45 |
|        | 168        |         |      |            |            |        |            |        |            |            |            |
|        | 166        |         |      |            | -          | 设计常水   | (灌溉期       | )      | 设计常水       | (非灌溉其      | 期)         |
|        | 164        |         |      |            |            | 设计枯水   | (灌溉期       | )      | 设计枯水       | (非灌溉其      | <b>月)</b>  |
| 高      | 162        | _       |      |            | _          | -河底高程  | (工程前       | ) i    | 河底高程       | 【工程后)      |            |
| 程<br>m | 160        | -       |      |            |            |        |            |        |            | -          |            |
| ۳      | 158        | _       |      |            | 0 0        | -      |            | -      |            |            |            |
|        | 156        |         |      |            |            | $\sim$ |            | $\sim$ |            |            |            |
|        | 154        |         |      |            |            |        |            |        |            |            |            |
|        | 152<br>(   | )       | 100  | 0          | 2000       | )      | 3000       | )      | 4000       |            | 5000       |

图 2-2 本工程设计常水、枯水水面线成果图

起点距(m)

## 1、工程总体布置

本工程起止范围为:上起黎明村老克潭,下止古陂村古陂新桥,河道治理 长度 4.007km。护岸范围:左岸上起古陂村响塘坑,下止古陂新桥;右岸上起 黎明村刘屋,下止李树下。治理内容主要包括河道清淤疏浚整治、河岸固脚护 岸、游步道等。

总 面 汲 场 置 东河左岸桩号为 K 东左 0+000~K 东左 4+019, 东河右岸桩号为 K 东右 0+000~K 东右 3+541, 治理内容主要包括:清淤疏浚整治长 0.797km;河岸固脚护岸总长 2.153km, 其中干砌石+抛石固脚长 0.895km; 抛石固脚护岸长 0.881km; 砼生态挡墙护岸总长 0.377km; 新建游步道 0.777km, 新建排水涵管 1 座。下河步阶 6 处。

## (1)清淤疏浚控制线布置

疏浚中心线宜与主流方向一致,交角不宜超过 150°,清淤疏浚控制线应力求平顺,上、下游衔接顺畅,尽量避免采用折线或急弯,清淤疏浚河段的河

底高程宜与现状河底高程相接近,不宜改变清淤疏浚河段的河道比降。

## (2) 护岸线布置

本河道治理工程护岸线布置综合考虑两岸岸距、河岸现状走向、水流条件、地形地质条件等因素,总体上顺天然河岸大趋势走向布置,对于淤积严重或行洪能力不满足要求的河道,采取河道拓宽疏浚整治,对卡口河段进行拓宽,恢复河道行洪能力,对于局部内凹或外凸河岸,在不侵占河道行洪通道的情况下,护岸线布置适当外移或内置,以改善水流条件。

## (3) 下河踏步布置

本工程在沿河两岸共设置 6 个下河踏步,位置根据工程管理及群众生活休闲需要适当调整。

## (4) 游步道布置

本工程在东河左岸圩镇段设置游步道,新建游步道上起古陂中学围墙,下 止古陂新桥,桩号为 K 路 0+000~K 路 0+784,新建游步道总长 0.777km。为 连接上下游村庄村民通行便利,故该段游步道依现状岸顶铺设游步道。新建游 步道起始处新建砼路面与现有村庄道路衔接,终点处新建踏步与现有道路相 接,保护集镇的同时兼顾周围居民出行便利。

## (5) 排水涵管布置

根据排水要求,本工程在 K 路 0+350 布置 1 座排水涵管,采用预制圆涵,分为进口段、管身段、消力池段、抛石海曼段。进口段采用八字口布置形式,矩形槽结构,底板及边墙厚度均为 0.3m。底宽由 2.3m 收缩至 1.0m,长度为 4.85 m; 管身段长度 14m,采用圆涵型式(内径 1.0m),管身为 C30 砼,管壁厚度 0.1m,底部设 0.12m 厚 C15 砼垫层。出口消力池为 C20 砼矩形槽结构,底板及边墙厚度均为 0.3m,消力池段长 2.5m,池身 0.3m,底板厚 0.3m。抛石海曼段长 8.5m,底部宽 1.0m,厚 0.3m,抛石底部与两侧地面放坡衔接。

#### 2、施工交通及施工总布置

## (1) 施工交通

## 1) 对外交通

本工程对外交通以公路为主,施工期间外来物资均可通过公路运输到达施 工场地,工程对外交通便利。

## 2) 场内交通

本工程场内临时交通要解决外来物资至施工点、场内各工作面连接等问题。根据本工程为线性分布的特点,尽可能在永久性征地范围内修建临时道路解决场内交通问题。本工程共需新建临时交通公路 2.0km。为双车道泥结石路面。

## (2) 施工总布置

本工程施工工作面沿河线分散分布,因此施工临时设施不宜集中布置。根据地形、地质条件及现场实际条件,进行施工场地的总平面布置。在具体布置中,利用现有的施工场地条件,合理布局,统筹安排,确保各施工时段内的施工均能正常有序进行。同时尽量少占耕地,对施工区及周围环境进行有效的保护。

## 1) 施工供电

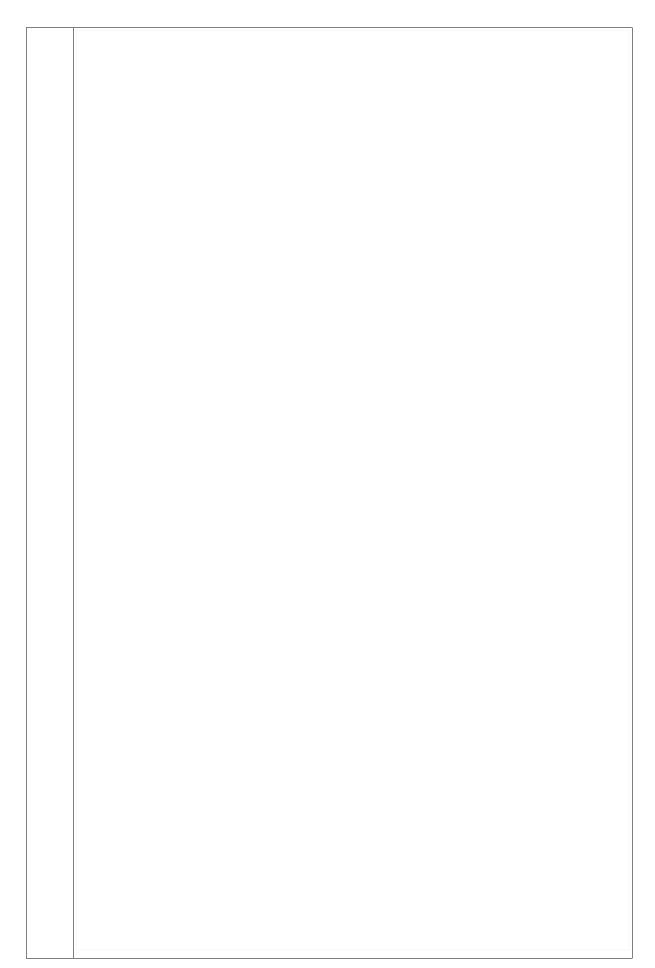
本工程沿岸线就近接电网用电。岸内沿线有可就近接电源,布置配电设备 及架设临时线路供电。

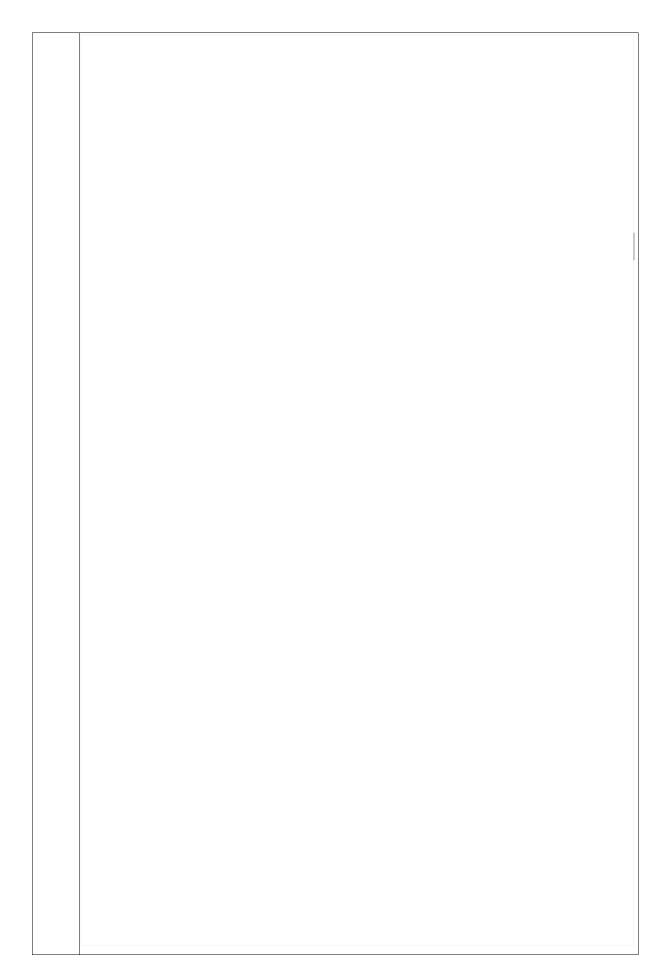
## 2) 施工供水

本工程在各施工用水点根据需要架设水泵抽取河水或施工废水用于施工作业。主要用水点为混凝土及建筑物施工场地,布置相对固定的抽水泵站;沿岸线可临时采用小型潜水泵抽水供施工及混凝土养护用水,也可根据需要使用施工废水作为施工用水。

## 3) 混凝土拌和系统

本工程混凝土拌和系统沿线布置在施工现场,采用移动式拌和机灵活布置,就近拌和供应混凝土。


#### 4) 仓库和堆料场


本工程水泥仓库分散布置于施工场地附近;其它仓库则根据施工需要和方便,分别灵活布置。混凝土骨料堆料场主要于施工场内及靠近混凝土拌和系统布置。

## 5) 临时房屋及公用设施

为方便管理及工程施工,以便利施工为原则,本工程就近租用民房作为管理用房和公用设施用房。

|      | - |  |  |
|------|---|--|--|
|      |   |  |  |
|      |   |  |  |
|      |   |  |  |
| 施工方案 |   |  |  |
|      |   |  |  |
|      |   |  |  |
|      |   |  |  |
|      |   |  |  |





行浇筑,浇筑完后及时养护。混凝土的振捣时间以混凝土不再显著下沉,不出现气泡,并开始汽浆为准。已浇好的混凝土,其抗压强度未达到规定要求,不得进行下一步工作。

## 3)(干) 浆砌石

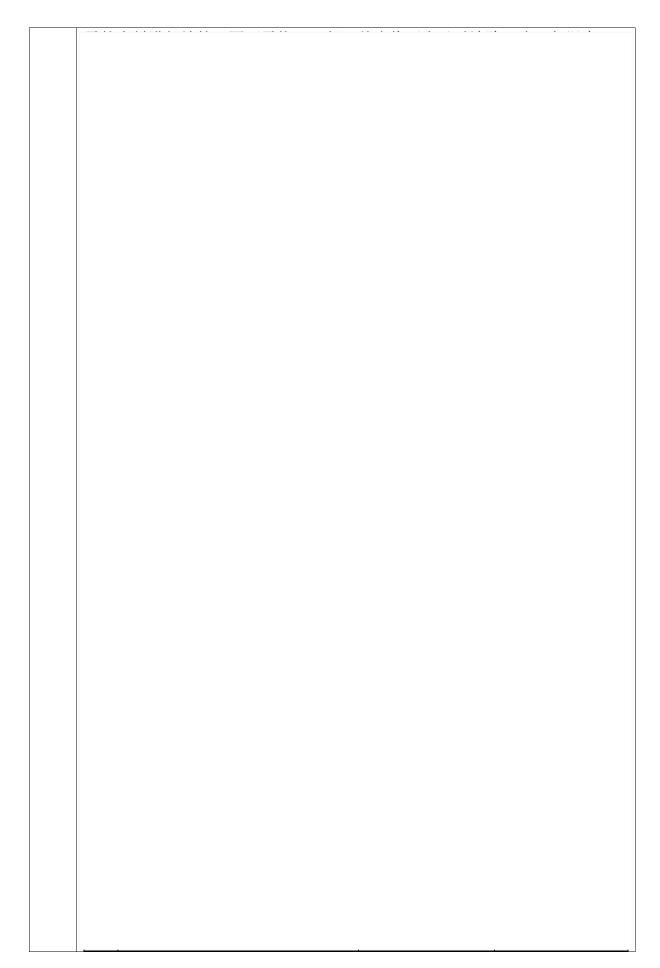
块石料外购进场,现场人工抬运块石至工作面,人工砌筑。砌石所用块石的材质、块径、厚度应满足有关技术要求,砌石时应尽量利用块石自然形态相互咬合,砌体层间应错缝搭接,砌筑要密实,表面应平整。浆砌石砂浆所用砂料外购到现场,拌和机现场拌制砂浆,胶轮车运砂浆至工作面,人工铺浆、勾缝。

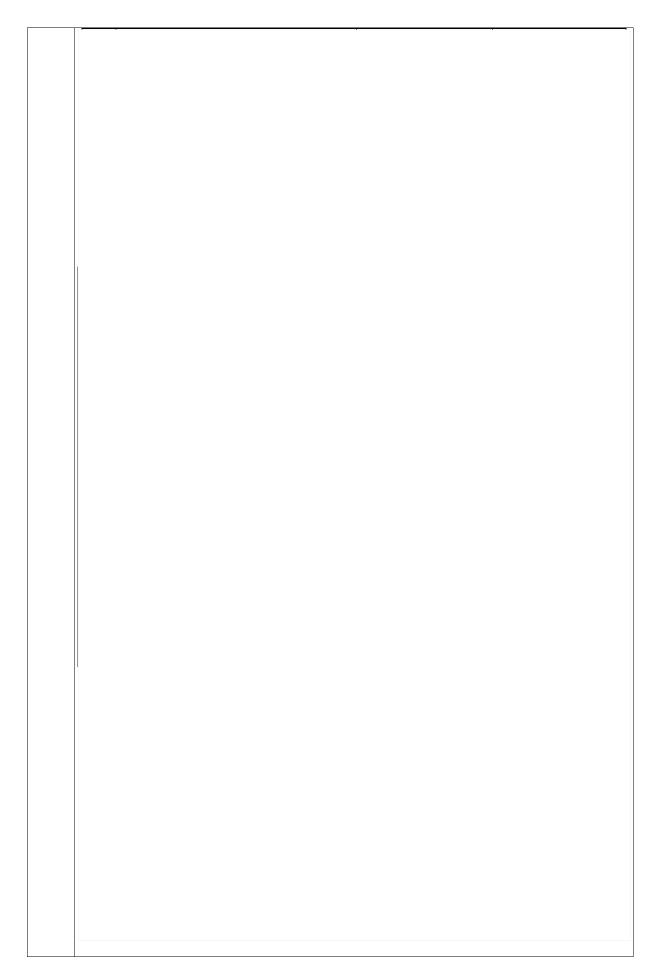
## 4) 抛石固脚

抛石料外购进场,采用人工岸上抛投,抛投施工程序: 地形测量→划分网格→测量放样→石料的石质检查→抛投→人工整坡→进入下一道工序。

抛石采用的块石必须是质地坚硬、新鲜、完整的岩石,遇水不易破碎或水解,比重不小于 2.65t/m³,饱和抗压强度不低于 50MPa,软化系数大于 0.75,块径在 0.20~0.50m 为宜,宜以 0.3~0.4m 为主,小石嵌缝,大小搭配均匀。抛石固脚的孔隙率控制在 0.21~0.26 之间,采用 13t 以上振动碾碾压至无明显沉降为止。

抛投时机宜在枯水期内选择。抛投前,应测量抛投区水深流速、断面形状等基本情况。抛石应从最能控制险情的部位抛起,依次展开。水深流急时,应 先用较大石块在护脚部位下游侧抛一石埂,然后再逐次向上游侧抛投。抛投完 成后,进行水下测量,检测抛投质量。


#### 5) 砂砾石垫层


垫层料外购进场,人工挑运或人力双胶轮车推运至工作面,人工摊平,小型振动碾碾实。

#### 6) 一般草皮护坡

- ①松土:播种前,清除杂草,整理场地,对内坡进行松土,松土深 5cm;
- ②回填腐殖土:回填土采用客土、复合肥或泥炭肥的混合物。 复合肥建议采用进口复合肥,成分按 N:P:=15:15:15 或 N: P: =10: 8:7;
  - ③铺草皮:采用满铺;
  - ④养护管理: 铺草皮后及时浇水,以后每星期最少浇水一次,直到完全成

| 1 |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |





#### 1、护岸形式比较

根据规范要求以及《江西省重点地区中小河流近期治理项目初步设计审查 导则》,护岸型式宜优先选用坡式护岸,受地形条件或两岸建筑物限制时可采 用墙式护岸。

本工程新建护岸根据治理河段现状情况及各段河岸所处地形地质,按照不影响上、下游、左右岸地区和有利于行洪原则,结合类似工程护岸处理经验,采取平顺护岸形式进行处理以稳定岸坡。目前应用较广泛的坡式护岸有格宾石笼护坡、干砌石护坡、C20 混凝土矮挡墙、C20 混凝土生态挡墙、自嵌式植生挡土墙护坡、生态砼预制块护岸等,通过对以上护岸型式进行技术、经济比较后结合本工程区实际情况综合分析后选用。

#### 1) 方案一: 干砌石护坡

干砌石护坡的消浪作用好,可用于抵御一般较大风浪的 3 级以上或岸高超过 6m 的堤防,也可用于暴雨强度大岸段的背水坡护坡。干砌石护岸的优点在于施工简单、块石适应性强,水流及河床的后期变形自我调整能力强,易于加固,一次性投资较少,护岸效果较好。干砌石护坡有利于植被的生长及河道鱼类的栖息。

其他

#### 2) 方案二: 格宾石笼护坡

由格宾网构成的薄箱体内装块石组成,常用于岸坡防护和河床护底等防冲刷工程,集柔韧性、透水性、环境亲和性、耐久性、施工便捷性、经济性、抗冲性等诸多优点于一身,厚度为 0.23m 的格宾护垫可承受 4.5m/s 的临界水流流速,承受的极限流速可达 6.1m/s,广泛应用于城市河道整治工程中。

#### 3)方案三: C20 混凝土矮挡墙

混凝土矮挡墙应用广泛,材料强度高,抗冲刷能力强,但景观效果差,可通过用砂浆在墙顶砌筑块石及在墙角种植挺水植物来增加景观效果。施工需在围堰保护下施工。

## 4) 方案四: 自嵌式植生挡土墙护坡

自嵌式植生挡土墙护坡抗冲能力强,施工简易,河道水面以上不见挡墙, 其独特的内控造型为水生植物提供了良好的生长空间,提高绿化率和植被覆盖 率,同时墙面和墙角同时排水,水压力减少,轻体的整体稳定性得到了保证, 借助于拉筋与填土间的摩擦力来提高填土的抗剪强度,结构稳定。缺点是开挖 面较大,须有足够空间放置拉筋。

## 5) 方案五: 生态砼挡墙护岸

生态砼又叫植生砼、绿化砼等,它是一种有着特殊结构特性的砼,既能适应绿色植物的正常生长又对生态平衡的调节有积极的促进作用,同时可以优化自然的环境景观。占地小,节省空间,缺点是造价较贵。



固滨笼摆放及回填土施工水准测量

完工后一段时期部分区段绿草覆盖

图 2-4 格宾石笼施工及完工效果图





图 2-5 干砌石护岸完工及完工后一段时间效果图





图 2-6 砼生态挡墙护岸完工及完工后一段时间效果图

表 2-13 护岸、护坡材料比选表

| 序号      | 护岸形式                           | 适用条件                              | 优缺点                                                                                 | 备注 |
|---------|--------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|----|
| 方案      | 干砌石护<br>坡+抛石固<br>脚             | 用于大风浪袭<br>击堤防、堤防<br>背坡。           | 施工简单、块石适应性强,水流及河<br>床的后期变形自我调整能力强,易于<br>加固,一次性投资较少,护岸效果较<br>好,有利于植被的生长及河道鱼类的<br>栖息。 |    |
| 方案二     | 格宾石笼护坡                         | 用于岸坡、河<br>床等防冲刷工<br>程,城市河道<br>工程。 | 柔韧性、透水性、环境亲和性、耐久<br>性、抗冲性好,施工便捷、经济。                                                 |    |
| 方案      | C20 混凝<br>土矮挡墙<br>结合雷诺<br>护垫护岸 | 用于城市河道防护。                         | 抗冲刷能力强,景观效果差,但可通<br>过用砂浆在墙顶砌筑块石及在墙角种<br>植挺水植物来增加景观效果。                               |    |
| 方案四     | 自嵌式植<br>生挡土墙<br>护坡             | 用于城市河道 防护。                        | 柔性好,耐冲刷,整体性好,能适应<br>不均匀沉降;美观效果较好。投资较<br>大。                                          |    |
| 方案<br>五 | 生态砼挡 墙护岸                       | 用于城市河道 防护。                        | 耐冲刷,整体美观效果较好,占地小、节省空间。                                                              |    |

#### 2、护岸形式选择

根据表 2-3 岸坡现状及加固情况统计表可知, K 东左 2+276~K 东左 2+568、K 东左 3+168~K 东左 3+277、K 东右 2+282~K 东右 2+532、K 东右 3+297~K 东右 3+541 段河岸岸坡冲刷淘岸较严重, 大部分岸坡较陡, 岸坡内侧为大片农田, 岸坡主要为粉质壤土层、圆砾层、卵石层, 岸坡受水流冲刷作用明显, 局部出现塌岸, 部分河段形成陡岸, 河道抗冲问题较突出。主要从抗冲刷以及生态建设等角度考虑, 周围有一定绿化要求, 采用干砌石护坡+抛石固脚方案。

K 东左 2+709~K 东左 3+168 段河岸枯水位较深,且临近居民房,从抗冲刷角度考虑,该段采用抛石固脚护岸。K 东右 2+875~K 东右 3+297 段岸脚遗留采砂基坑较多,导致岸脚冲刷不稳,对该段采用抛石固脚护岸,抛石以上段进行岸坡整治及草皮护坡。

K 东左 3+642~K 东左 4+019 段河岸为古陂乡镇所在,因此此段河岸结合乡镇规划建设,并按生态文明的理念,重点推进以生态护岸、景观绿化、为居民提供休闲便利为主,主要从抗冲刷以及生态建设等角度考虑,周围有一定绿化要求,故选择格混凝土生态挡墙护岸,另在岸顶上设置游步道。

# 三、生态环境现状、保护目标及评价标准

### 1、空气环境质量现状

根据江西省生态环境厅发布的 2022 年江西省各县(市、区)六项污染物浓度年均值可知,信丰县环境质量现状统计结果详见下表。

表 3-1 2022 年江西省信丰县六项污染物浓度年均值 单位 µg/m³

| 污染物<br>名称 | SO <sub>2</sub> | NO <sub>2</sub> | PM <sub>2.5</sub> | PM <sub>10</sub> | CO 日均值<br>95%位数值    | O <sub>3</sub> 日最大 8 小时<br>值 90%位数值 |
|-----------|-----------------|-----------------|-------------------|------------------|---------------------|-------------------------------------|
| 信丰县       | 13              | 14              | 21                | 36               | $0.9 \text{mg/m}^3$ | 162                                 |
| 评价标准      | 60              | 40              | 35                | 70               | 4mg/m <sup>3</sup>  | 160                                 |
| 占标率       | 21.67%          | 35%             | 60%               | 51.43%           | 22.5%               | 101.25%                             |
| 达标情况      | 达标              | 达标              | 达标                | 达标               | 达标                  | 不达标                                 |

根据上述统计结果可知,信丰县大气污染物  $SO_2$ 、 $NO_2$ 、 $PM_{2.5}$ 、 $PM_{10}$ 、CO 均满足《环境空气质量标准》(GB3095-2012)中二级标准, $O_3$  指标浓度为  $162\mu g/m^3$ ,超出《环境空气质量标准》(GB3095-2012)二级标准,由于本项目不涉及  $O_3$  的产生与排放,因此不会对信丰县  $O_3$  现状浓度产生负面影响。

生态 环境 现状

### 2、地表水环境质量现状

本工程区域地表水体为东河,本次评价引用《赣州宇锦环保有限公司建筑固废,污泥,中和石灰渣,石膏等一般工业固废再利用建设工程检测报告》(江西恒定检测字(2021)H06016号)中的东河水环境质量现状监测的数据,监测时间为2021年6月21日-6月23日,因此本工程引用数据真实有效。

## (1) 监测断面布设

具体监测断面布设详见下表和附图六。

表 3-2 地表水环境质量现状监测点分布一览表

| 断面序号            | 断面位置                 |
|-----------------|----------------------|
| $SW_1$          | 工程所在地东河上游 500m 处沙塘里  |
| $SW_2$          | 工程所在地东河下游 1500m 处田寮下 |
| SW <sub>3</sub> | 工程所在地东河下游 3000m 雷公岭下 |

- (2) 监测工程: pH、COD、BOD5、SS、NH3-N、TP、TN、石油类。
- (3) 监测时间及频率: 监测时间为 2021 年 6 月 21 日~6 月 23 日,连续

监测3天,每天一次。

(4)监测分析方法:按《地表水和污水检测技术规范》(HJ/T91—2002)和《地表水环境质量标准》(GB3838—2002)中表 4 规定的分析方法执行。

# (5) 评价方法

采用单因子指数法进行评价,其计算公式如下:

pH 的标准指数法公式为:

$$S_{pH,j} = \frac{7.0 - pH_j}{7.0 - pH_{sd}}$$
  $pH \le 7.0$ ;  $S_{pH,j} = \frac{pH_j - 7.0}{pH_{su} - 7.0}$   $pH > 7.0$ 

式中: pHj ——第 j 点的监测平均值;

pHsd——水质标准中规定的下限;

pHsu——水质标准中规定的上限;

其它评价因子的计算公式如下:

$$P_{ij} = \frac{C_{ij}}{S_{ii}}$$

式中:  $P_{ij}$  — 第 i 种污染物在第 j 点的指数;

Cij——第 i 种污染物在第 j 点的监测平均值 mg/L;

Sii——第 i 种污染物的评价标准 mg/L;

#### (6) 监测结果

地表水环境现状监测统计及评价结果详见下表。

表 3-3 地表水环境现状监测统计及评价结果 单位: mg/L, pH 为无量纲

| 断面编号 | 采样时间 | pН   | COD  | BOD <sub>5</sub> | SS   | 氨氮    | TP   | TN   | 石油类  |
|------|------|------|------|------------------|------|-------|------|------|------|
|      | 6.21 | 7.44 | 10   | 2.7              | 17   | 0.152 | 0.09 | 0.52 | 0.01 |
|      | 6.22 | 7.40 | 9    | 2.6              | 20   | 0.159 | 0.07 | 0.54 | 0.01 |
| SW1  | 6.23 | 7.38 | 8    | 2.3              | 19   | 0.165 | 0.05 | 0.51 | 0.01 |
| SW1  | 均值   | 7.41 | 9    | 2.5              | 19   | 0.159 | 0.07 | 0.52 | 0.01 |
|      | 标准   | 6-9  | 20   | 4                | 30   | 1.0   | 0.2  | 1.0  | 0.05 |
|      | 标准指数 | 0.21 | 0.45 | 0.63             | 0.63 | 0.159 | 0.35 | 0.52 | 0.2  |
|      | 6.21 | 7.46 | 15   | 3.5              | 19   | 0.490 | 0.09 | 0.74 | 0.02 |
|      | 6.22 | 7.42 | 13   | 3.1              | 22   | 0.460 | 0.07 | 0.73 | 0.01 |
| SW2  | 6.23 | 7.39 | 12   | 2.9              | 21   | 0.478 | 0.06 | 0.76 | 0.01 |
|      | 均值   | 7.42 | 13   | 3.2              | 21   | 0.476 | 0.07 | 0.74 | 0.01 |
|      | 标准   | 6-9  | 20   | 4                | 30   | 1.0   | 0.2  | 1.0  | 0.05 |

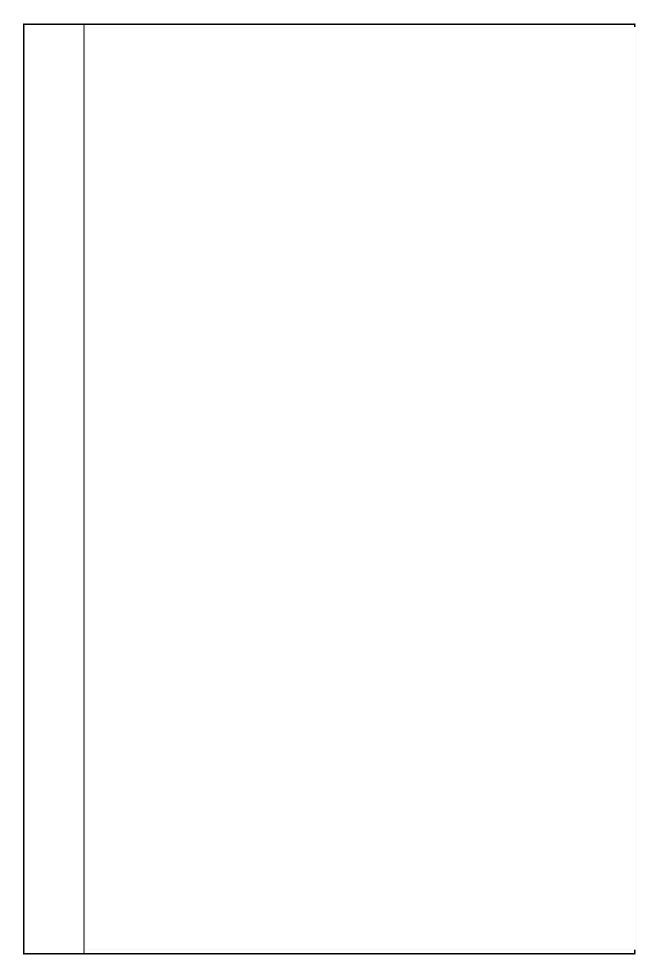
|       | 标准指数 | 0.21 | 0.65 | 0.8  | 0.7  | 0.476 | 0.35 | 0.74 | 0.2  |
|-------|------|------|------|------|------|-------|------|------|------|
|       | 6.21 | 7.43 | 5    | 1.0  | 20   | 0.396 | 0.09 | 0.61 | 0.01 |
|       | 6.22 | 7.43 | 4    | 0.9  | 16   | 0.387 | 0.07 | 0.60 | 0.01 |
| SW3   | 6.23 | 7.41 | 6    | 1.1  | 23   | 0.378 | 0.05 | 0.66 | 0.01 |
| 5 W 3 | 均值   | 7.42 | 5    | 1    | 20   | 0.387 | 0.07 | 0.62 | 0.01 |
|       | 标准   | 6-9  | 20   | 4    | 30   | 1.0   | 0.2  | 1.0  | 0.05 |
|       | 标准指数 | 0.21 | 0.25 | 0.25 | 0.67 | 0.387 | 0.35 | 0.62 | 0.2  |

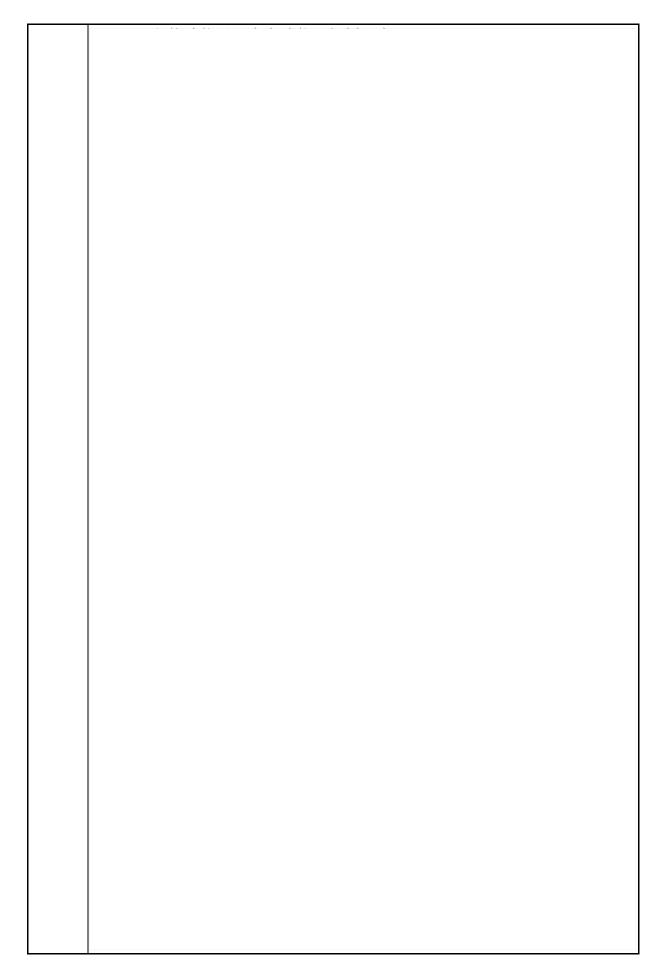
监测结果表明,东河各监测断面中的 pH、COD、BOD<sub>5</sub>、SS、NH<sub>3</sub>-N、TP、TN、石油类均满足《地表水环境质量标准》(GB3838-2002)III类水质标准要求,根据江西省人民政府《关于江西省地表水(环境)功能区划的批复》(赣府字[2007]35 号)、江西省水利厅和江西省环境保护局《关于印发江西省地表水(环境)功能区划的通知》(赣水资源字[2007]19 号)以及赣州市人民政府《赣州市地表水功能区划》(赣州市府字[2010]31 号)可知,本工程河段水功能区划为III类区,水功能区名称为桃江东河信丰保留区,表明区域地表水水质环境较好,满足工程建设河段水功能区划。根据对本工程所在地区域的东河段及下游沿线调查,工程所在地区域的东河段及下游均无村民饮用水取水点,沿线取水点主要农田灌溉取水。

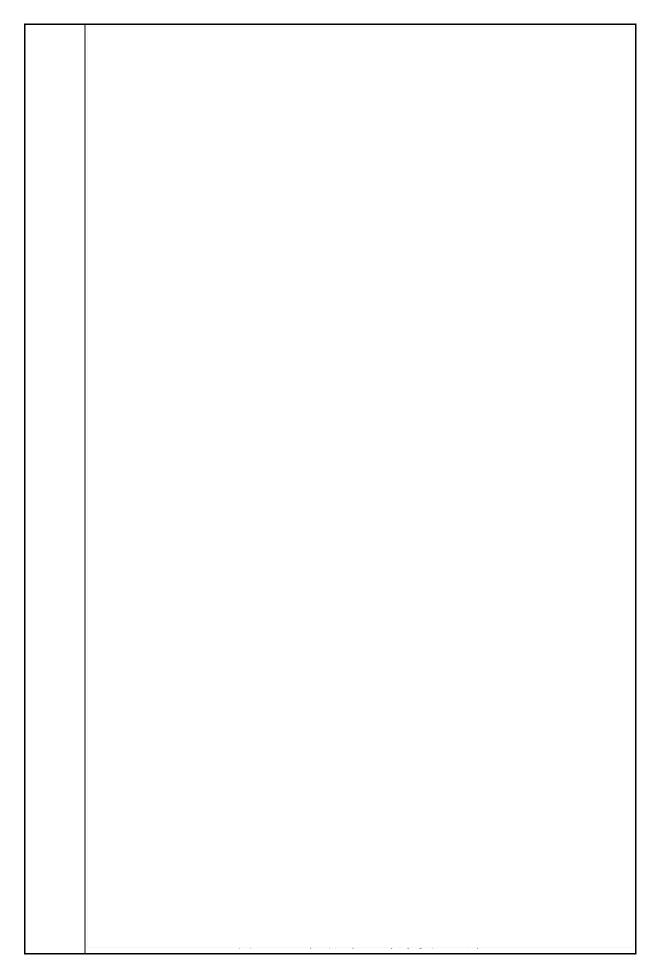
# 3、声环境

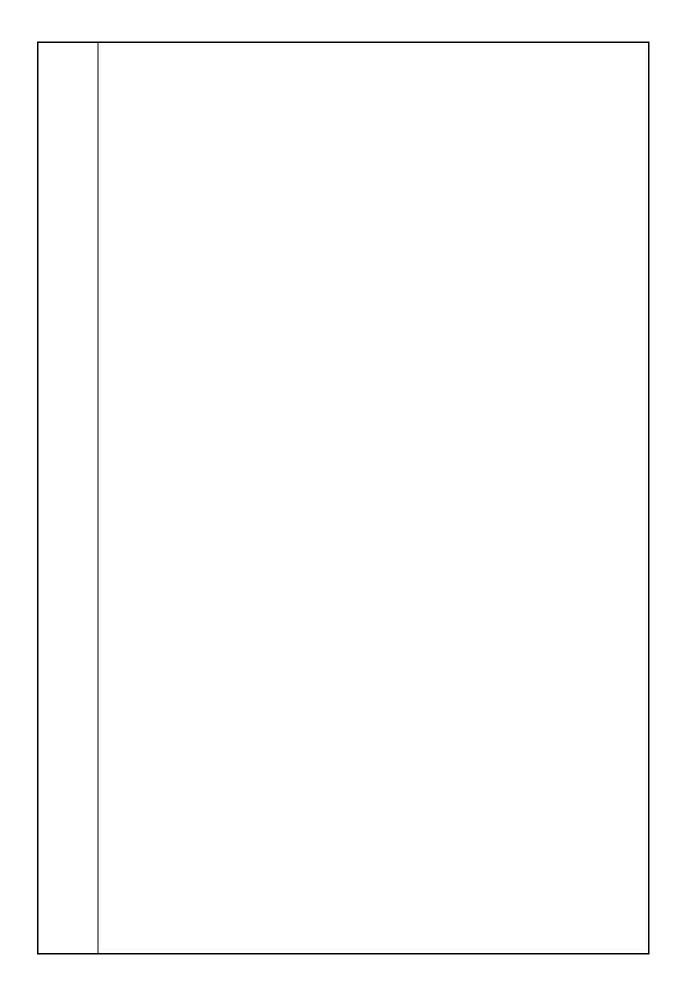
根据本工程沿线各敏感点的环境特征,本评价选取沿线 3 个具有代表性的敏感点,委托江西中皓检测技术有限公司 2023 年 10 月 8 日~10 月 9 日进行监测,具体监测结果如下。

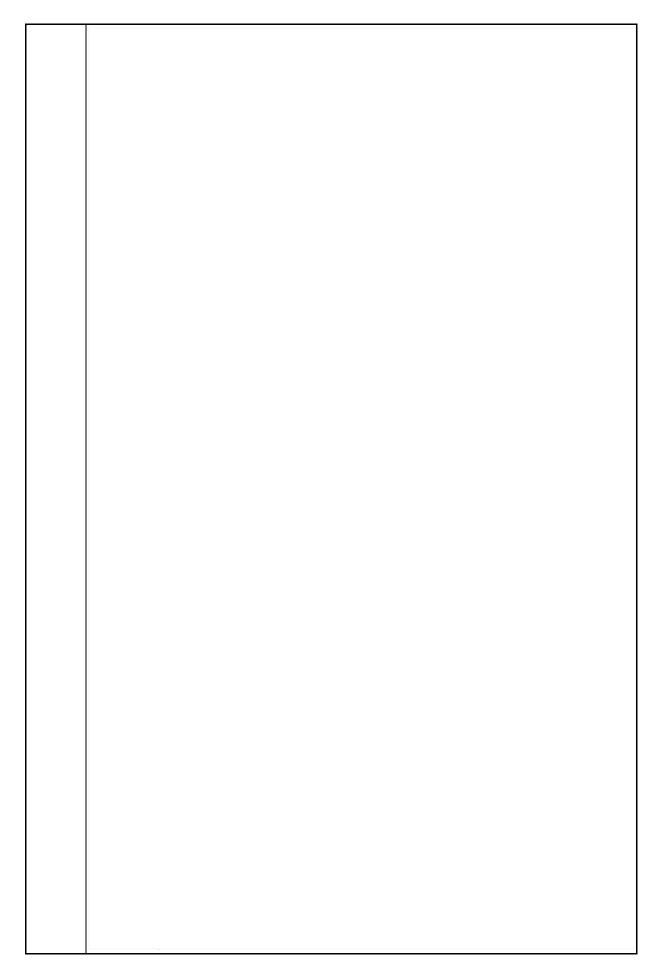
表 3-4 声环境现状监测点位及监测结果 单位: [dB(A)]

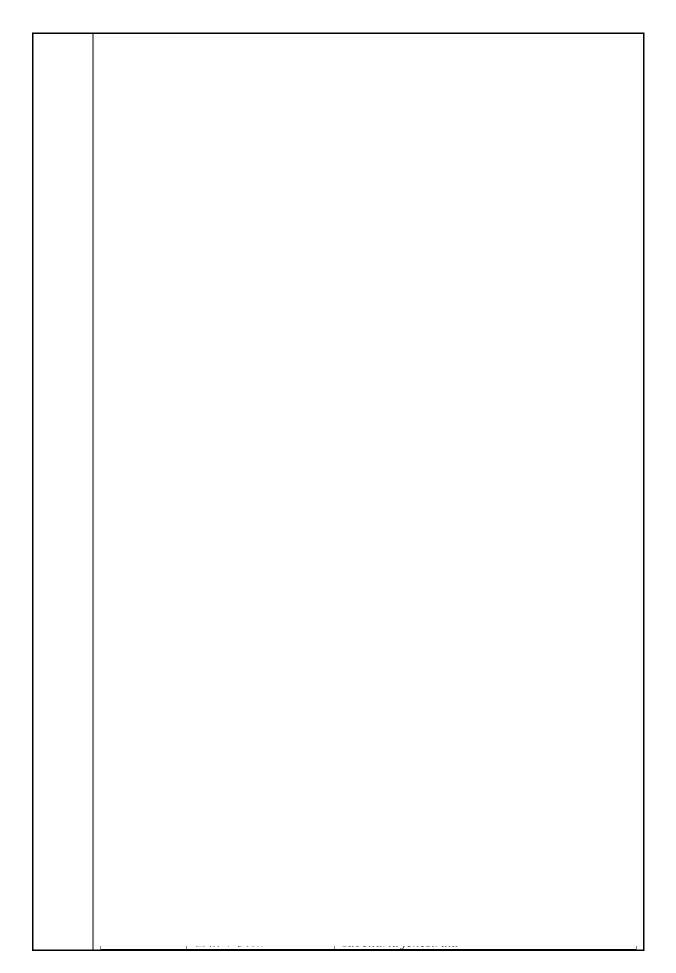

| 序 | 监测点     | 主要声源 | 2023.1 | 0.8~2023.10.9 |
|---|---------|------|--------|---------------|
| 号 | 血视点     | 工安产  | 昼      | 夜             |
| 1 | 上浪石头    | 社会生活 | 52.9   | 46.1          |
| 2 | 古陂镇中心小学 | 社会生活 | 52.1   | 47.4          |
| 3 | 古陂镇居民区  | 社会生活 | 53.9   | 47.2          |

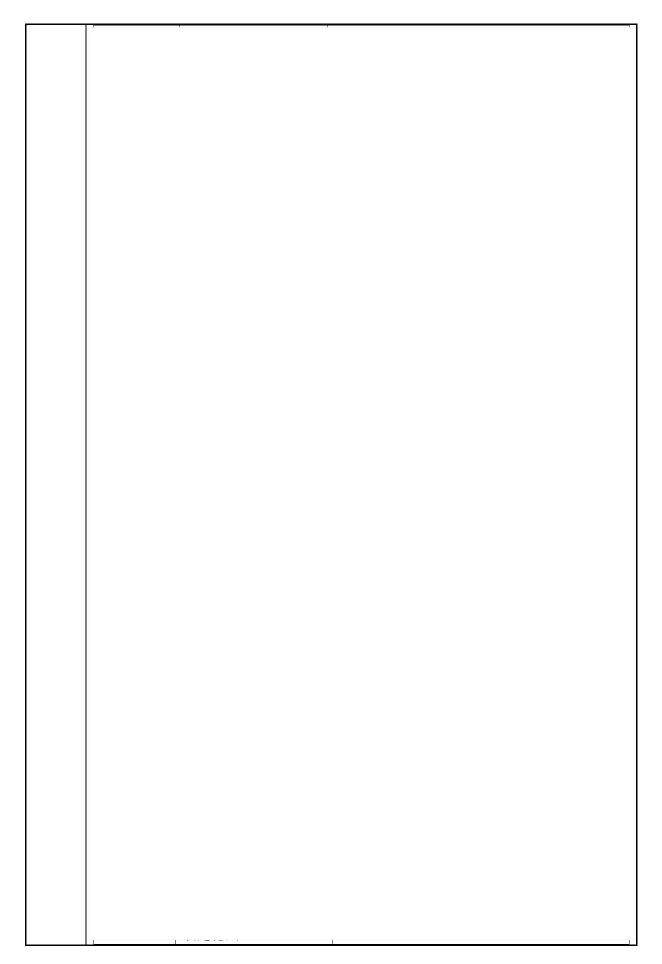

根据上表监测结果可知,本工程区域声环境满足《声环境质量标准》 (GB3096-2008)2类标准,表明区域声环境质量现状较好。

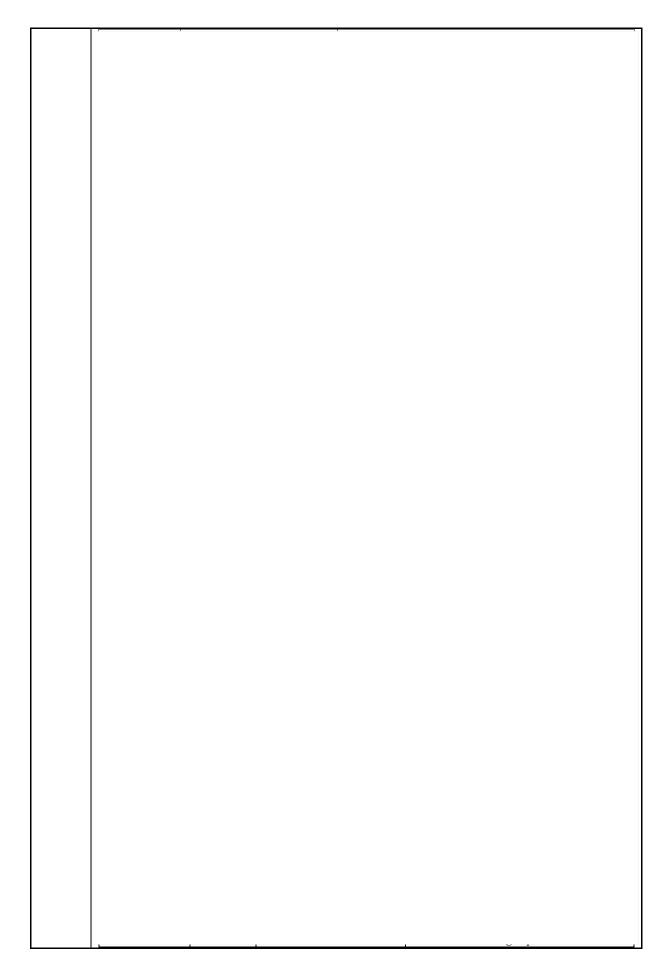

## 4、底泥环境质量现状监测及评价

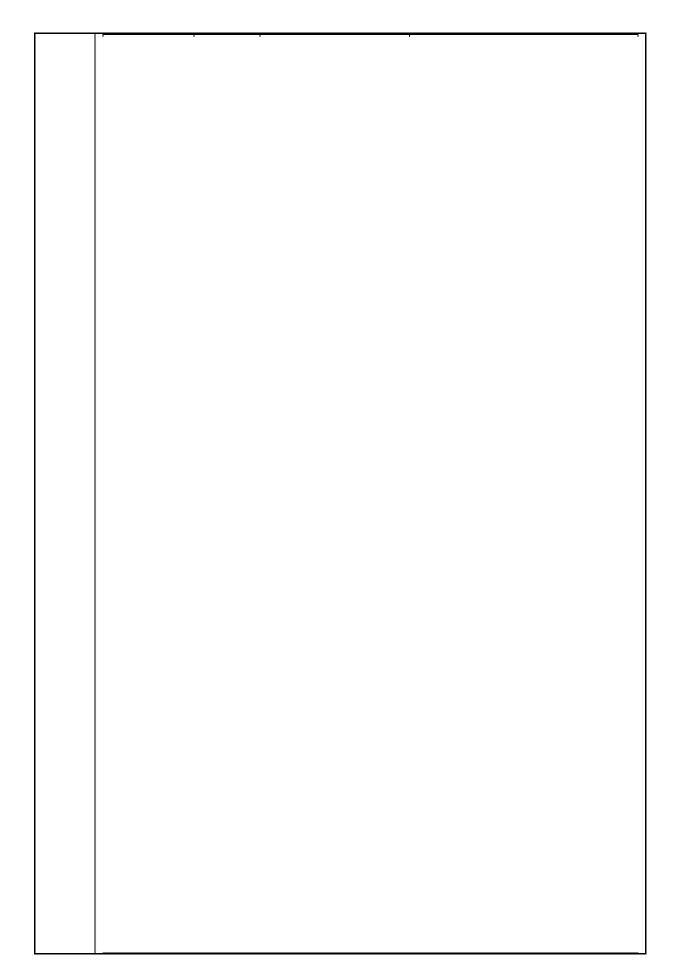

(1) 监测布点

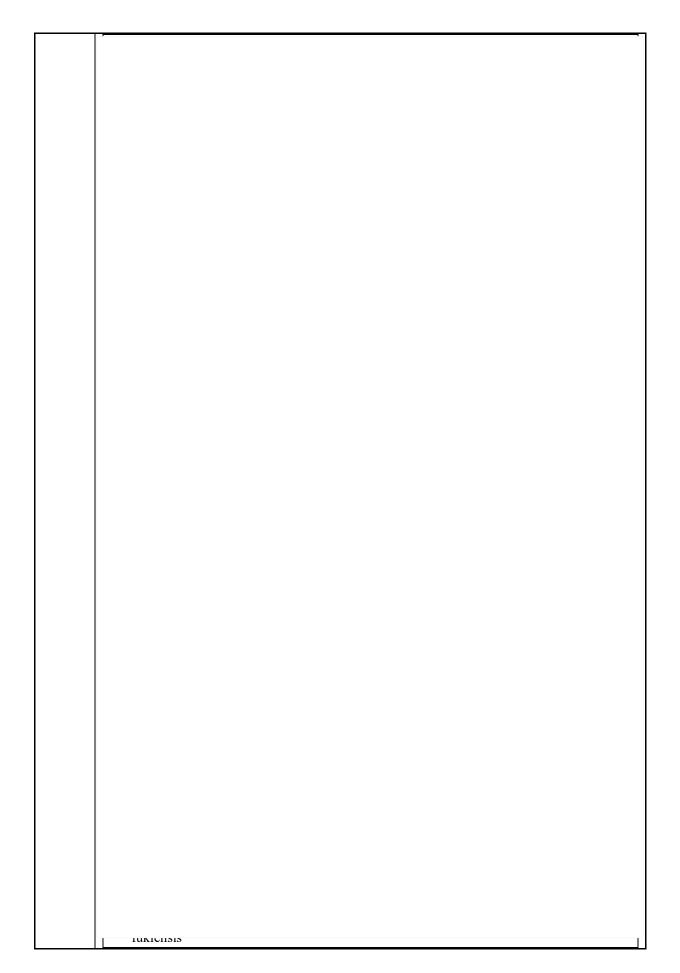

为了解清淤河道底泥现状,特委托江西中皓检测技术有限公司对本项目

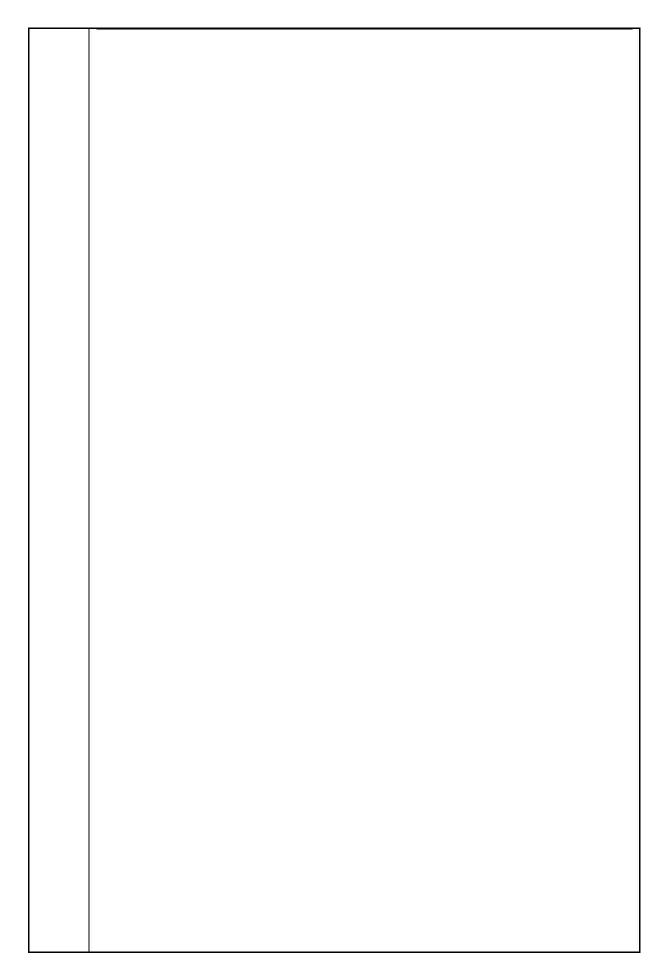


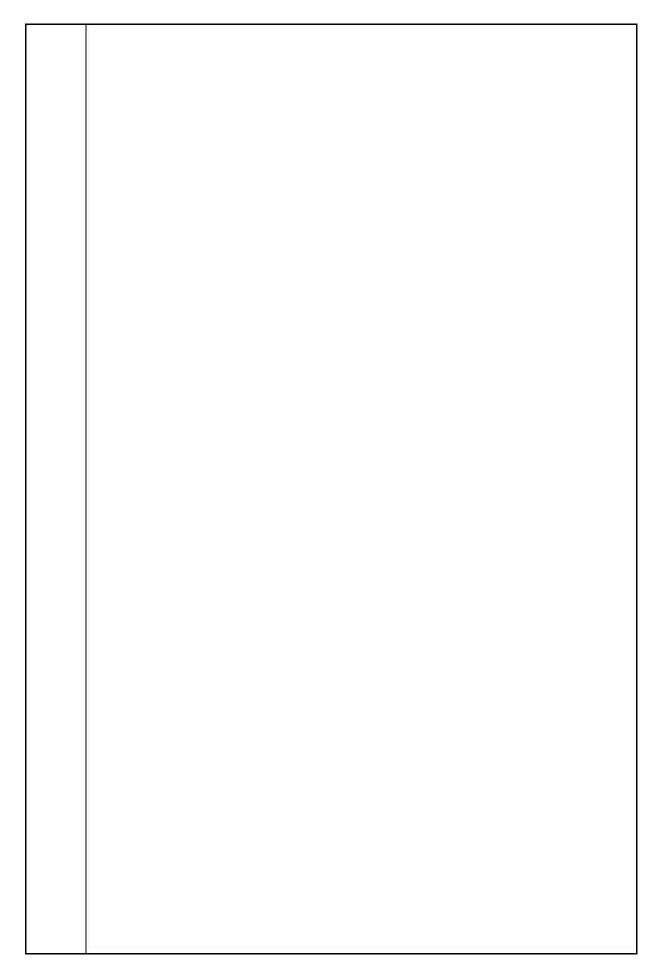














与程关原环污和态坏题工有的有境染生破问题

发源于信丰县金盆山村板障,自东南向西北流经新田,至三江口纳金鸡河后,转折流向西南,于锁铜隘纳大桥河,沿古陂,过太平圩、石禾场,折转流向西北,经龙舌口纳安西河,于龙舌村龙虎口渡头上汇入桃江。流域面积1079km²,主河道全长72.4km,主河道比降0.978‰,流域平均高程292m,流域平均坡度0.283m/km²。流域内地形复杂多变,中上游属低山丘陵地形,植被较好;下游属丘陵盆地地形,植被较差。

本工程所在东河流域属亚热带东南亚季风气候区,气候温和、雨量充沛。根据流域邻近的信丰县气象站多年资料统计,多年平均气温为 19.5℃,极端最高气温 39.4℃,极端最低气温-4.1℃,多年平均降水量 1623.5mm,多年平均蒸发量 1347.5mm,多年平均相对湿度 77%,多年平均日照时数 1810h,平均无霜期为 298d,多年平均最大风速 11.3m/s。

### 存在主要问题:

本工程治理范围内河道主要存在以下问题:①工程治理范围内沿岸及河槽内杂草丛生,局部河段淤积较严重,易冲刷坡脚,洪水期易冲刷崩岸。②河道两岸仅部分河道有植物防护设施,两岸岸坡主要由素填土、砂壤土、粗砂和圆砾层组成,土层结构较松散状~稍密状或可塑状,河岸抗冲刷能力较差~差,迎流顶冲处河岸现可见多处存在河岸冲刷现象。③是部分河段堵塞较严重,急需因地制宜,采取工程措东河属于中小山区性河流,由于流域内防洪基础设施薄弱,河道萎缩严重。本流域洪水的特点是暴涨暴落,涨落急剧。河流沿岸的基本处于不设防状态,遇到常遇洪水就可能造成较大洪涝灾害。加之不合理的河内设障、多年未实施清淤,致使河道萎缩严重,行洪能力逐步降低,对所在地区乡镇的防洪安全构成了严重威胁。④东河左岸古陂圩镇段地势较低矮,居民区频受洪涝灾害,据当地村民反映,平均2~3年居民区就承受受淹,解决该范围百姓洪涝灾害很有必要。

本工程岸坡现状情况见表 3-13。

表 3-13 本工程岸坡现状情况统计表

| 河岸 名称    | 桩号                              | 长度<br>(m) | 现状描述                                         |
|----------|---------------------------------|-----------|----------------------------------------------|
| 东河<br>左岸 | K 东左<br>0+000.000~K<br>东左 2+276 | 2276      | 该段河道较为低矮,植被发育,受河流冲刷作用<br>弱,现状未见崩岸现象,属基本稳定岸坡。 |

|  |       | K 东左 2+276~<br>K 东左 2+568 | 292  | 该段河道为迎流顶冲段,岸坡坡高 1~3m,岸坡坡度 15°~35°,岸坡表层为砂壤土,厚度0~2.2m,岸坡下部为圆砾层,厚度 2.5~3.6m,该段岸坡为土质岸坡,抗冲刷能力较差~差,岸坡稳定性较差。                   |
|--|-------|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------|
|  |       | K 东左 2+568~<br>K 东左 2+709 | 141  | 该段靠近 G357, 植被茂盛, 现状未见崩岸现象, 属基本稳定岸坡。                                                                                     |
|  |       | K东左 2+709~<br>K东左 3+168   | 459  | 该段岸坡较陡,坡高 2~5m,岸坡坡度 25°~<br>45°,岸坡表层为砂壤土或含砾中砂,厚度<br>0.9~2.3m,下部为圆砾层,该段岸坡为土质岸<br>坡,抗冲刷能力较差~差,岸坡稳定性较差。                    |
|  |       | K 东左 3+168~<br>K 东左 3+277 | 109  | 该段岸坡表层为砂壤土,厚度 0~0.6m,下部为圆砾层,抗冲刷能力差,现状岸线被洪水掏蚀严重,岸坡稳定性较差。                                                                 |
|  |       | K 东左 3+277~<br>K 东左 3+642 | 365  | 该段河道宽阔,岸坡低矮,植被发育,岸坡受河<br>流冲刷作用弱,现状未见崩岸现象,属基本稳定<br>岸坡。                                                                   |
|  |       | K 东左 3+642~<br>K 东左 4+019 | 377  | 该段靠近居民区,边坡较陡,植被较少。岸坡表层为砂壤土,层厚约 1.0m;下部为圆砾层,岸坡土体抗冲刷能力较差~差,局部已出现崩岸的现象,岸坡稳定性较差。                                            |
|  |       | K 东右 0+000~<br>K 东右 2+282 | 2282 | 该段河道较为低矮,植被发育,受河流冲刷作用<br>弱,现状未见崩岸现象,属基本稳定岸坡。                                                                            |
|  | 东河 右岸 | K 东右 2+282~<br>K 东右 2+532 | 250  | 该段河道岸坡坡高 1~3m, 岸坡坡度 15°~<br>35°, 岸坡表层为砂壤土, 厚度 0~2.7m, 岸坡<br>下部为圆砾层, 厚度 2.5~3.6m, 该段岸坡为土<br>质岸坡, 抗冲刷能力较差~差, 岸坡稳定性较<br>差。 |
|  |       | K 东右 2+532~<br>K 东右 2+875 | 343  | 该段受以前采砂影响,河道宽阔,植被发育,岸<br>坡受河流冲刷作用弱,现状未见崩岸现象,属基<br>本稳定岸坡。                                                                |
|  |       | K 东右 2+875~<br>K 东右 3+541 | 666  | 该段岸坡表层为砂壤土,厚度 0~2.6m,下部为圆砾层,抗冲刷能力差,现状岸线被洪水掏蚀严重,岸坡稳定性较差。                                                                 |



图 3-3 老克潭至刘屋河段现状照片



图 3-4 刘屋至古陂新桥河段现状照片

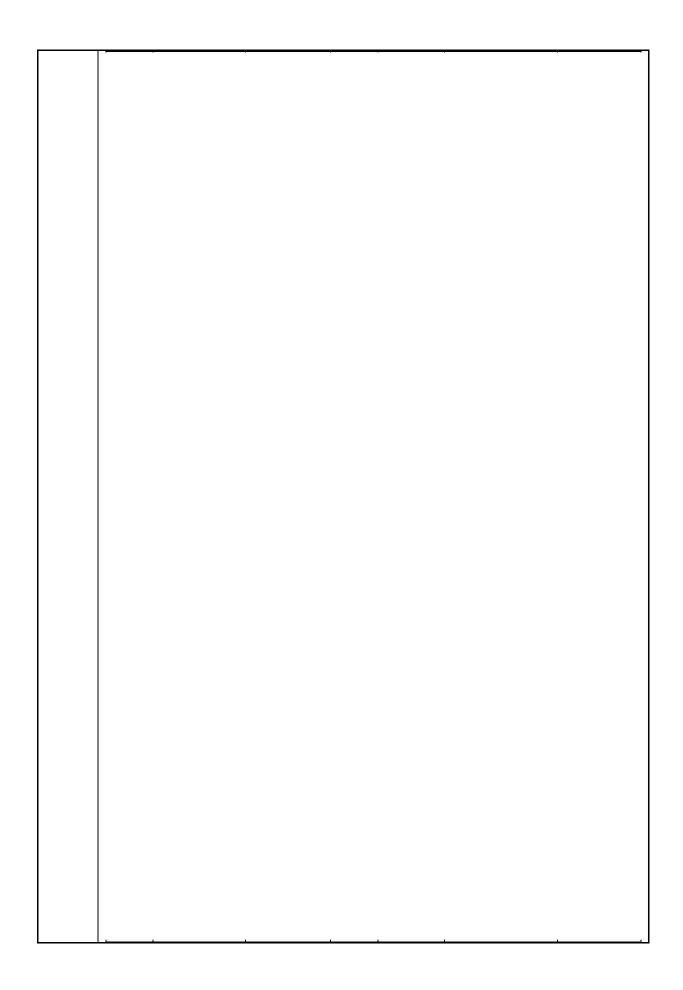
另外根据调查,本工程东河施工河段沿线为城镇农村环境,沿线农户的 生活污水大多排入化粪池预处理后用于农田施肥,工程所在地周围污染物主 要来源于河流两岸部分居民的日常生活污水以及农田施用的化肥农药,同时东河两岸沿线分布有雨水沟汇入,工程河段河流沿线工业排污口较少,水体现状水质良好。

本次治理提出的东河治理范围上起黎明村老克潭,下止古陂村古陂新桥,河道整治长度 4.007km,该区域地势低洼,两岸分布有大量农田,河道内江心洲、边滩及漫滩发育,行洪能力较低,难以抵御较大洪水。通过整治河道,清除河道垃圾,确保行洪顺利通畅,减少洪水灾害的发生。同时,改善沿岸的环境和河流水质,与乡村规划相协调,改善沿河周边景观,为居民提供较好的休闲娱乐场地,提高乡圩镇防洪标准,增强抵御自然灾害的能力,确保当地乡村居民的防洪安全和重要县道交通畅通。

本工程选址位于信丰县古陂镇境内,工程用地周围 500m 范围内没有需要保护的文物古迹、自然保护区和珍稀动植物,周围环境比较简单。根据现场踏勘,把工程所在区域环境质量作为主要的环境保护目标。

- 1、地表水:确保地表水环境保护评价区域内水质满足《地表水环境质量标准》(GB3838-2002)III类标准。
- 2、环境空气:确保环境空气质量满足《环境空气质量标准》(GB3095-2012)中二类区标准。
- 3、声环境:确保区域能够满足《声环境质量标准》(GB3096-2008)2类区标准限值。

表 3-14 声环境环境保护目标


| 序号 | 桩号                            | 保护目标名 称    | 相对位置关系 | 最近距离<br>范围<br>(m) | 规模           | 保护<br>对象 | 环境功<br>能区            |
|----|-------------------------------|------------|--------|-------------------|--------------|----------|----------------------|
| 1  | K 东右<br>0+000                 | 老克潭村民      | 北面     | 180~200           | 约7户28人       | 村庄       |                      |
| 2  | K 东右<br>0+000                 | 下村村民       | 东北面    | 144~200           | 约6户24人       | 村庄       | 《声环<br>境质量           |
| 3  | K河 0+000∼<br>K河 0+592         | 上浪石头村<br>民 | 西北面    | 39~200            | 约 46 户 184 人 | 村庄       | 标准》<br>(GB30         |
| 4  | K 东左<br>0+834~ K 东<br>左 0+996 | 竹山下村民      | 东南面    | 48~200            | 约 23 户 92 人  | 村庄       | 96-<br>2008)<br>2 类区 |
| 5  | K河 1+165~<br>K河 1+867         | 下浪石头村<br>民 | 北面     | 160~200           | 约 82 户 328 人 | 村庄       |                      |

生环保目标

| 6  | K 东左<br>1+165~K 东<br>左 1+956  | 老金背村民                   | 东南面                   | 90~200  | 约 28 户 112 人        | 村庄       |                     |
|----|-------------------------------|-------------------------|-----------------------|---------|---------------------|----------|---------------------|
| 7  | K 东右<br>2+282~ K 东<br>右 2+532 | 刘屋村民                    | 西北面                   | 70~200  | 200 约7户28人          |          |                     |
| 8  | K 东左<br>2+276~ K 东<br>左 2+709 | 岭下村民                    | 东南面                   | 45~200  | 45~200 约 37 户 148 人 |          |                     |
|    | K 东左                          | 古陂镇居民区                  | 南面、<br>西南面            | 5~200   | 约 120 户 480 人       | 住宅区      |                     |
| 9  | 2+709~ K 东<br>左 3+168         | 古陂镇中心<br>卫生院            | 西南面                   | 90~200  | 约 120 人             | 医院       |                     |
|    | 左 3+108                       | 古陂镇中心 小学                | 西南面                   | 40~200  | 约 300 人             | 学校       |                     |
| 10 | K路 0+000~<br>K路 0+499         | 古陂镇居民区                  | 西面、<br>南面、<br>东南面     | 10~200  | 约 98 户 392 人        | 住宅区      |                     |
| 11 | K河 3+512~<br>K河 4+007         | 古陂镇居民区                  | 西北<br>面、西<br>面、北<br>面 | 30~200  | 约 130 户 520 人       | 住宅区      |                     |
|    |                               | 古陂镇居民区                  | 东南<br>面、南<br>面        | 10~200  | 约 510 户 2040<br>人   | 住宅区      | 《声环                 |
| 12 | K路 0+506~<br>K路 0+784         | 古陂镇古陂<br>居委会退役<br>军人服务站 | 南面                    | 150~170 | 约 20 人              | 事业<br>单位 | 境质量<br>标准》<br>(GB30 |
|    |                               | 古陂派出所                   | 南面                    | 130~170 | 约 30 人              | 行政<br>机关 | 96-<br>2008)        |
|    | K 东右                          | 黎明村                     | 东北面                   | 170~200 | 约 10 户 40 人         | 村庄       | 2 类区                |
| 13 | 3+297~ K 东<br>右 3+541         | 李树下                     | 北面                    | 40~200  | 约 60 户 240 人        | 村庄       |                     |

# 表 3-15 环境空气、地表水环境保护目标

| 环境要素     | 桩号                        | 保护目标名称     | 相对位置关系 | 最近距离<br>范围<br>(m) | 规模             | 环境功能区                         |
|----------|---------------------------|------------|--------|-------------------|----------------|-------------------------------|
|          | K 东右 0+000                | 老克潭村民      | 北面     | 180~500           | 约 47 户 188 人   |                               |
|          | K 东右 0+000                | 下村村民       | 东北面    | 144~500           | 约 82 户 328 人   | 《环境空气                         |
| 环境空<br>气 | K河 0+000~ K<br>河 0+592    | 上浪石头村<br>民 | 西北面    | 39~500            | 约 74 户 296 人   | 质量标准》<br>(GB3095-<br>2012)中二类 |
|          | K 东左 0+834~<br>K 东左 0+996 | 竹山下村民      | 东南面    | 48~500            | 约 29 户 116 人   | 区                             |
|          | K河 1+165~ K<br>河 1+867    | 下浪石头村<br>民 | 北面     | 160~500           | 约 265 户 1060 人 |                               |

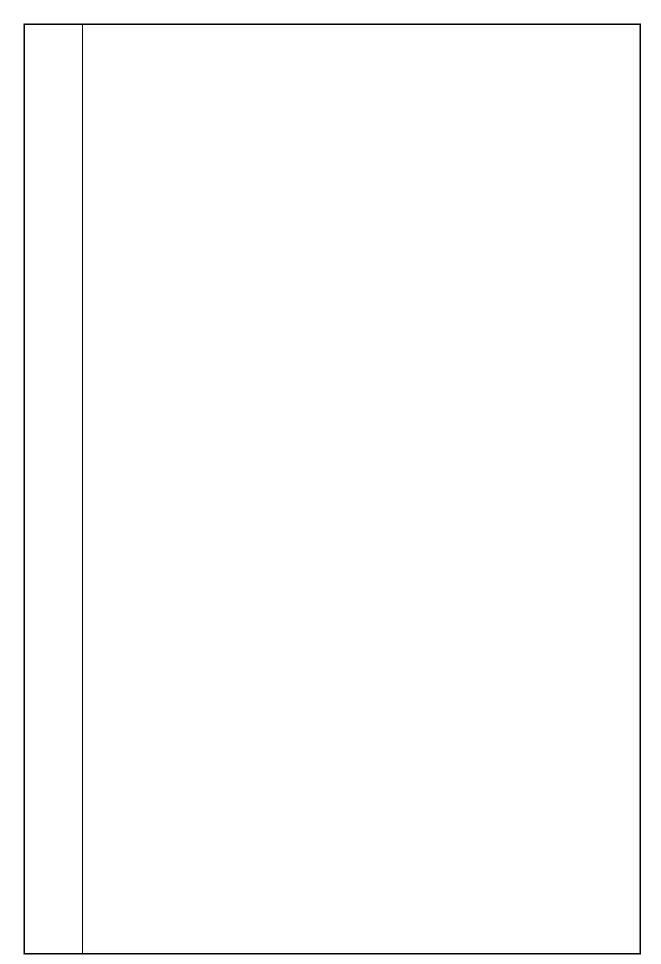


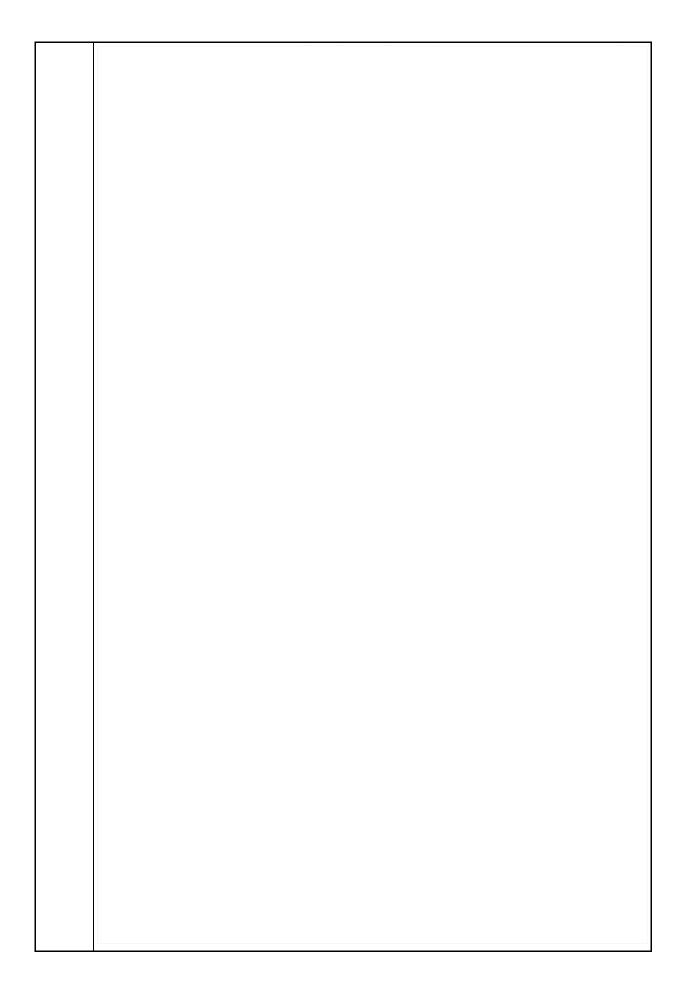
|    |   |  | • |  |
|----|---|--|---|--|
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    | _ |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
| 评价 |   |  |   |  |
| 标准 |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |
|    |   |  |   |  |

准》(GB18597-2023)中的相关标准。

(3)施工期噪声执行《建筑施工场界环境噪声排放标准》(GB12523-2011)中的相关标准,具体标准值详见下表。

表 3-18 噪声排放标准一览表 单位: dB(A)


| 时段  | 标准来源                               | 级别 | 昼间限值 | 夜间限值 |  |
|-----|------------------------------------|----|------|------|--|
| 施工期 | 《建筑施工场界环境噪声排放标准》<br>(GB12523-2011) | /  | 70   | 55   |  |


本工程属于防洪工程,为非污染类工程,因此不涉及总量控制问题。

其他

# 四、生态环境影响分析

| 施生境分工态影析 |  |  |  |
|----------|--|--|--|
|          |  |  |  |





30m 以内。因此,车辆扬尘对运输线路周围小范围大气造成一定程度的污染。通过制定专门的运输路线,运输车辆采取篷布覆盖等措施后,运输扬尘的影响将得到有效控制。

## (2) 施工机械设备及运输车辆燃油排放的废气

施工过程中各种工程机械和运输车辆在燃烧汽油、柴油时排放的尾气含有 THC、颗粒物、CO、NOx 等大气污染物,主要对作业点周围和运输路线两侧局部范围产生一定影响,通过对大型柴油运输车辆、推土机等机械设备安装尾气净化器,使尾气达标排放,运输车辆禁止超载,不得使用劣质燃料,同时对施工机械和运输车辆采取加强保养,使其处于良好的工作状态,可最大限度的减轻燃油废气对环境空气的影响,由于施工机动车相对分散,且为流动性,加之地面开阔,其影响是短期的、局部的,因此尾气排放对周围环境空气会不利影响较小。

## (3) 柴油发电机燃油废气

本工程拟配备柴油发电机一台,作为备用电源。由于工程沿线有完备的供电电路,供电稳定,出现停电的概率极低,因此本工程配备的柴油发电机使用概率极低。柴油发电机的燃油废气中含有 CO、碳氢化合物、NO<sub>x</sub>等污染物。通过在柴油发电机安装尾气净化器,使尾气达标排放;同时不得使用劣质燃料,对柴油发电机采取加强保养,使其处于良好的工作状态,可最大限度的减轻燃油废气对环境空气的影响。

#### (5) 清淤过程及堆场恶臭产生的恶臭

河道清淤产生的底泥,在受到扰动和临时堆放时,会引起恶臭物质呈无组织状态释放,从而影响周围环境空气质量,主要恶臭污染物为硫化氢和氨。淤泥长期沉积于河底可能含有少量植物、藻类、生活垃圾等,沉积时间如果较长,有机质腐败后容易散发臭味。

#### ①臭气强度等级

参考日本对恶臭污染的相关标准,本次评价对恶臭进行等级划分,将恶臭分为六个等级,详见表 4-2。各恶臭污染物的标准限值一般相当于臭气强度 2.5~3.5 级,超出该强度范围,即认为发生恶臭污染,需要采取防护措施。

#### 表4-2 臭气强度分类表

| 强度分类        | 分级内容         |
|-------------|--------------|
| 7H 14 11 5H | 1 1 20 11 25 |

| Ī |  |
|---|--|

空气以及河道附近的村庄影响是暂时的,随着工程施工结束后其影响便结 東。

## 3、噪声影响分析

## (1) 噪声源分析

本工程施工期噪声主要为施工机械噪声和交通噪声两类。

施工噪声源主要为施工场地的机械噪声,其主要表现在持续时间长,设 备声功率级高等特点。具体噪声源强参照《环境噪声与振动控制工程技术导 则》(HJ 2034-2013) 附录 A.2 中相关数据,详见下表。

| 序号 | 机械类型                 | 测点距施工机械距离(m) | 最大声级(dB) |
|----|----------------------|--------------|----------|
| 1  | 1.0m <sup>3</sup> 反铲 | 5            | 90       |
| 2  | 59W、74W 推土机          | 5            | 88       |
| 3  | 5t~10t 自卸汽车/载重汽车     | 5            | 82       |
| 4  | 10~15t 振动碾           | 5            | 92       |
| 5  | 2.8kW 蛙式打夯机          | 5            | 85       |
| 6  | 0.4m³ 拌和机            | 5            | 80       |
| 7  | 胶轮车                  | 5            | 80       |
| 8  | 6~8t 压路机             | 5            | 80       |
| 0  | 12~15+ 匡敗却           | 5            | 25       |

表 4-4 施工机械噪声测试声级

## (2) 噪声影响分析

施工过程施工机械产生的噪声多属于中、低频噪声,因此预测时考虑扩 散衰减。施工机械一般可看作固定点声源,对周围声环境的影响范围详见表 4-5。

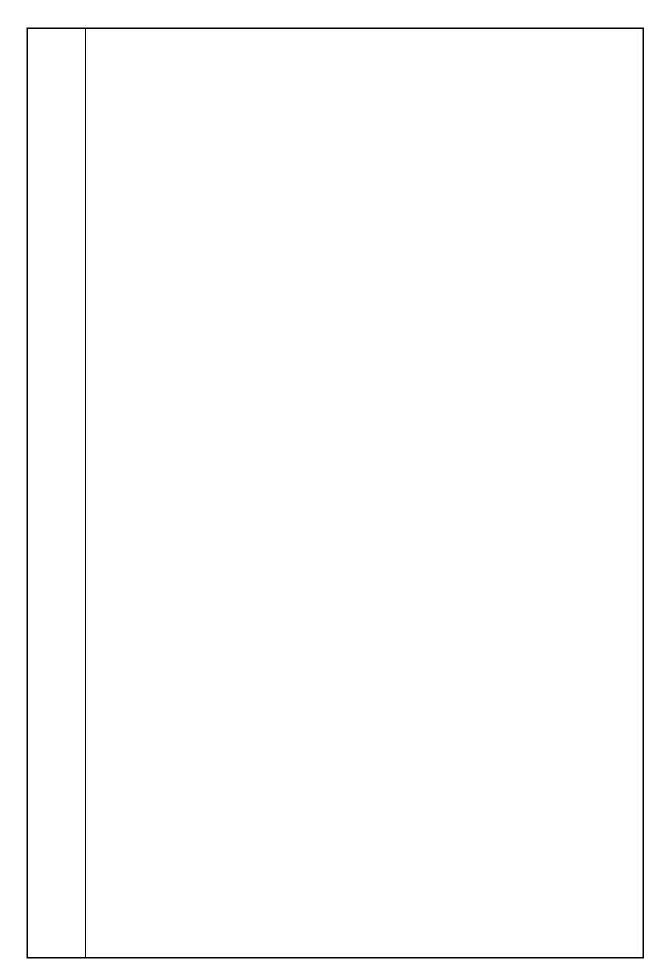
| 3  | 表 4-5 | 主要  | 施工  | 机械  | 噪声  | 影响剂  | 围    | 单位:  | dB(A | <b>A</b> ) |   |
|----|-------|-----|-----|-----|-----|------|------|------|------|------------|---|
| 声级 |       | 距离  | 5作业 | 点不同 | 距离: | 处的嗉  | 東声衰  | 减值   | 限值   | 标准         | 过 |
| 设备 | 源强    | 20m | 40m | 60m | 80m | 100m | 150m | 200m | 昼    | 夜          | 扌 |

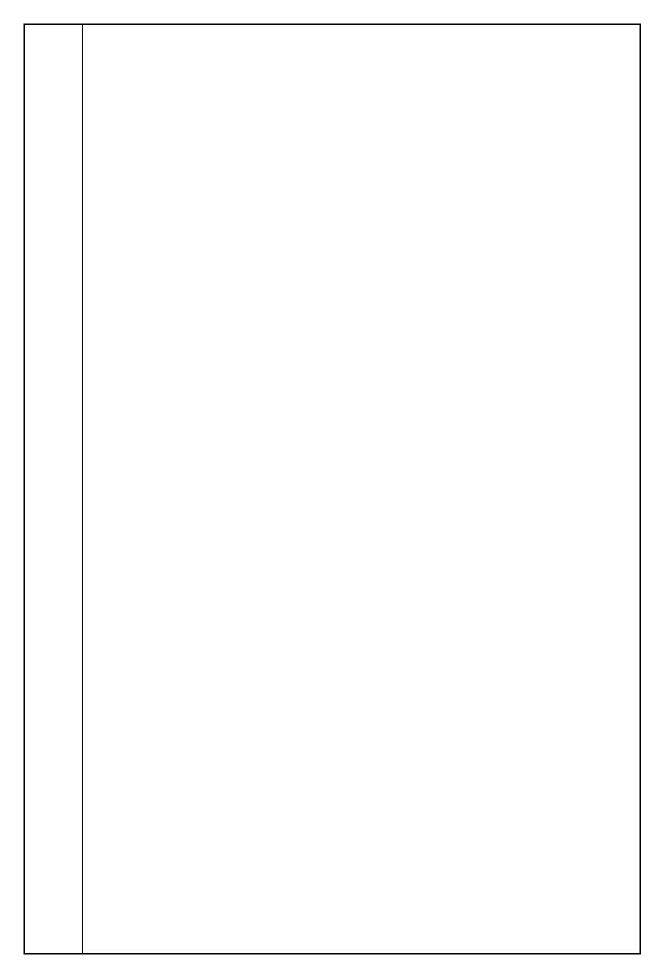
| 声级            | 咪尸 | 距离作业点不同距离处的噪 |     |     |     |      | :声衰减值 |      | 限值标准 |    | 达标距离<br>(m) |    |
|---------------|----|--------------|-----|-----|-----|------|-------|------|------|----|-------------|----|
| 设备            | 源强 | 20m          | 40m | 60m | 80m | 100m | 150m  | 200m | 昼    | 夜  | 昼           | 夜  |
| 反铲            | 90 | 64           | 58  | 54  | 52  | 50   | 46    | 44   | 70   | 55 | 10          | 57 |
| 推土机           | 88 | 62           | 56  | 52  | 50  | 48   | 44    | 42   | 70   | 55 | 8           | 45 |
| 自卸汽车/载重汽<br>车 | 82 | 56           | 50  | 46  | 44  | 42   | 38    | 36   | 70   | 55 | 4           | 23 |
| 振动碾           | 92 | 66           | 60  | 56  | 54  | 52   | 48    | 46   | 70   | 55 | 13          | 71 |
| 蛙式打夯机         | 85 | 59           | 53  | 49  | 47  | 45   | 41    | 39   | 70   | 55 | 6           | 32 |
| 拌和机           | 80 | 54           | 48  | 44  | 42  | 40   | 36    | 34   | 70   | 55 | 4           | 19 |
| 胶轮车           | 80 | 54           | 48  | 44  | 42  | 40   | 36    | 34   | 70   | 55 | 4           | 19 |
| 6~8t 压路机      | 80 | 54           | 48  | 44  | 42  | 40   | 36    | 34   | 70   | 55 | 4           | 19 |

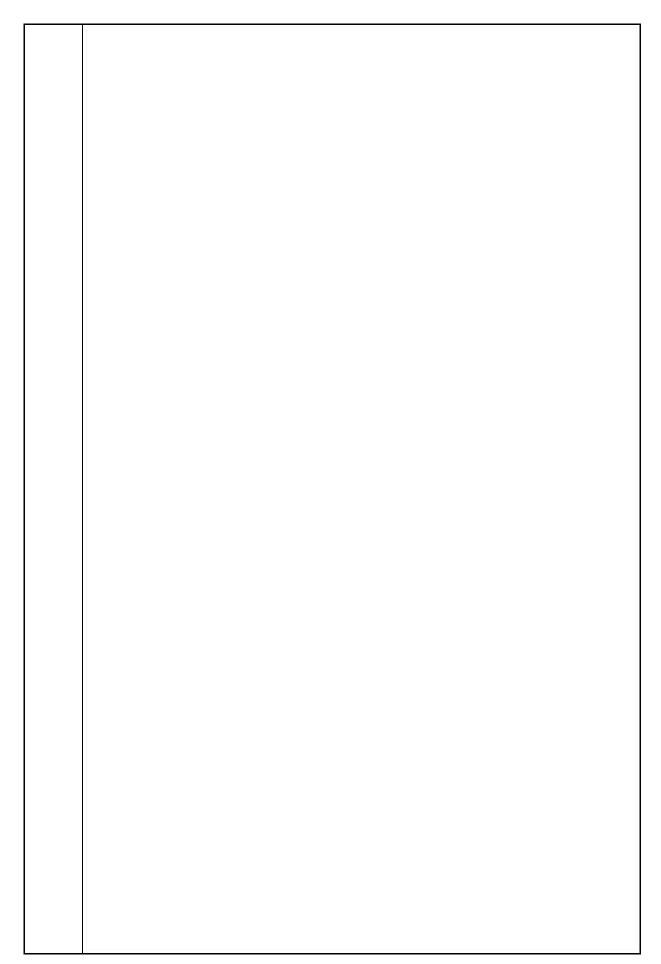
12~15t 压路机 85 59 53 49 47 45 41 39 70 55 6 32

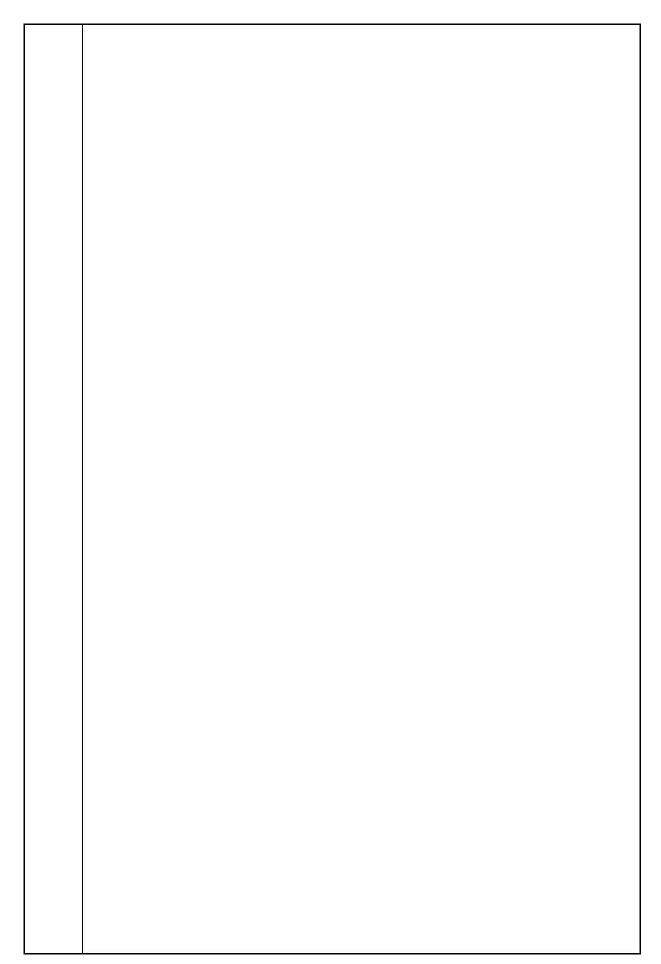
根据沿线现场勘察,工程最近敏感点为 K 东左 2+709~ K 东左 3+168 处南面、西南面的古陂镇居民区、西南面的古陂镇中心卫生院、西南面的古陂镇中心小学,最近距离约为 5m; K 路 0+000~K 路 0+499 处西面、南面、东南面的古陂镇居民区,最近距离约为 10m; K 河 3+512~ K 河 4+007 处西北面、西面、北面的古陂镇居民区,最近距离约为 30m,; K 路 0+506~K 路 0+784 处东南面、南面的古陂镇居民区,最近距离约为 30m,; K 路 0+506~K 路 0+784 处东南面、南面的古陂镇居民区,最近距离约为 10m,由上表可知,工程施工期的设备噪声会对沿线施工场地周围敏感点声环境产生一定程度的不利影响,由于工程施工活动仅昼间施工,夜间禁止施工,应对噪声采取噪声源控制、传声途径控制(施工区域周围设围挡、运输车辆限速等)、布设声屏障等降噪措施,确保工程各施工场界昼间噪声排放达到《建筑施工场界环境噪声排放标准》(GB 12523-2011)中的要求,由于工程施工作业噪声在采取相应降噪措施后仍不可避免的对敏感点产生一定影响,但这种影响是暂时且有限的,随着施工的结束,施工噪声的污染也随之消失。

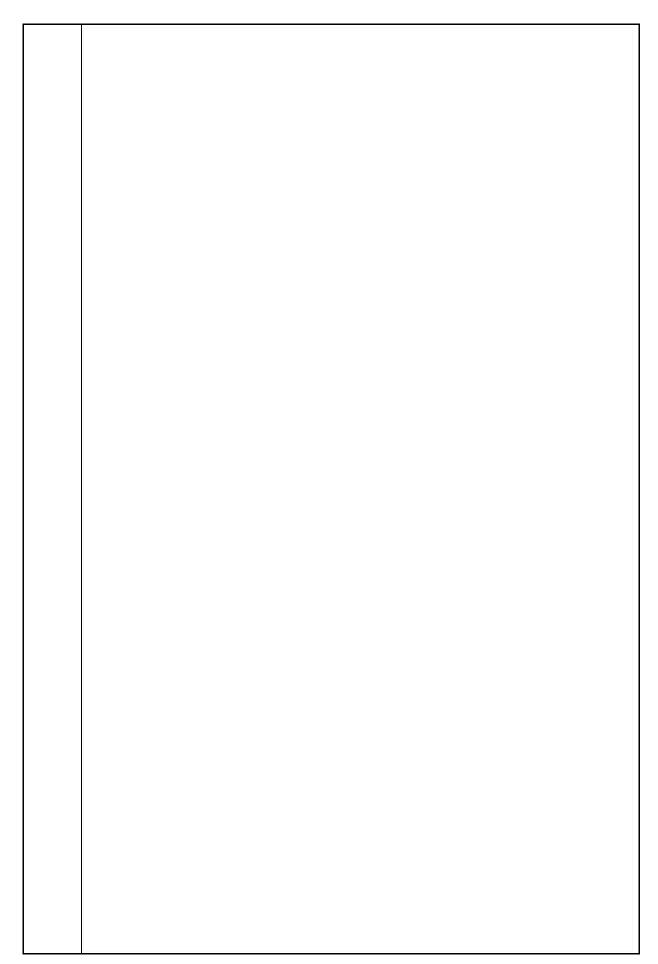
## 4、固体废物影响分析

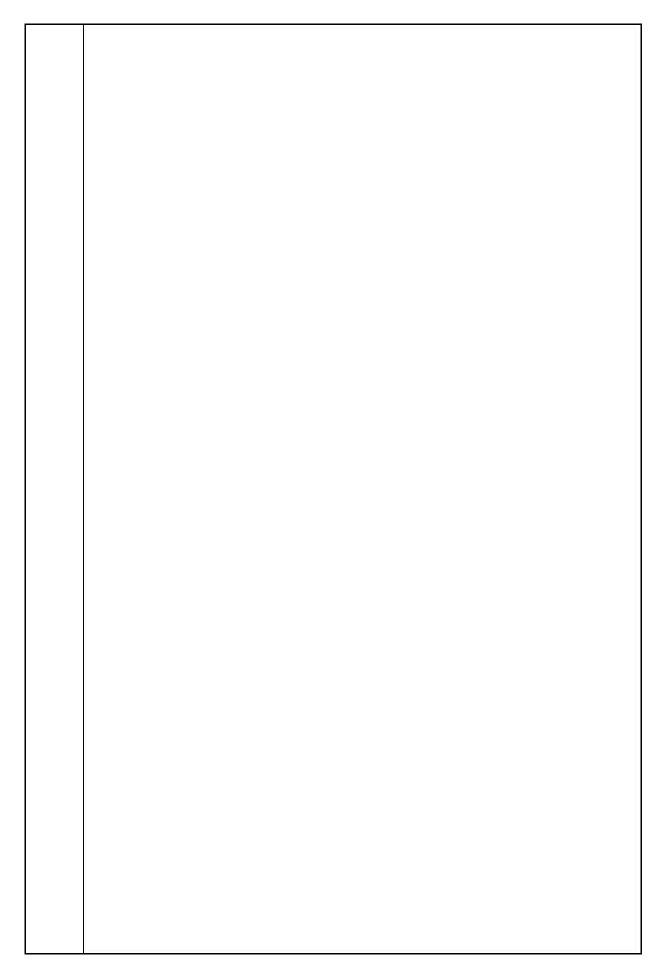

本工程施工期产生的固体废物主要为施工人员生活垃圾、施工场地建筑 垃圾、施工弃土石方、沉淀泥渣。项目施工机械及车辆依托周边乡镇维修厂 维护,因此无维修废物产生。工程在施工建设过程中对开挖弃土石方和建筑 垃圾如果随处乱倒会对周围环境产生较大的污染和危害,同时也会对沿线景 观产生破坏性的影响。

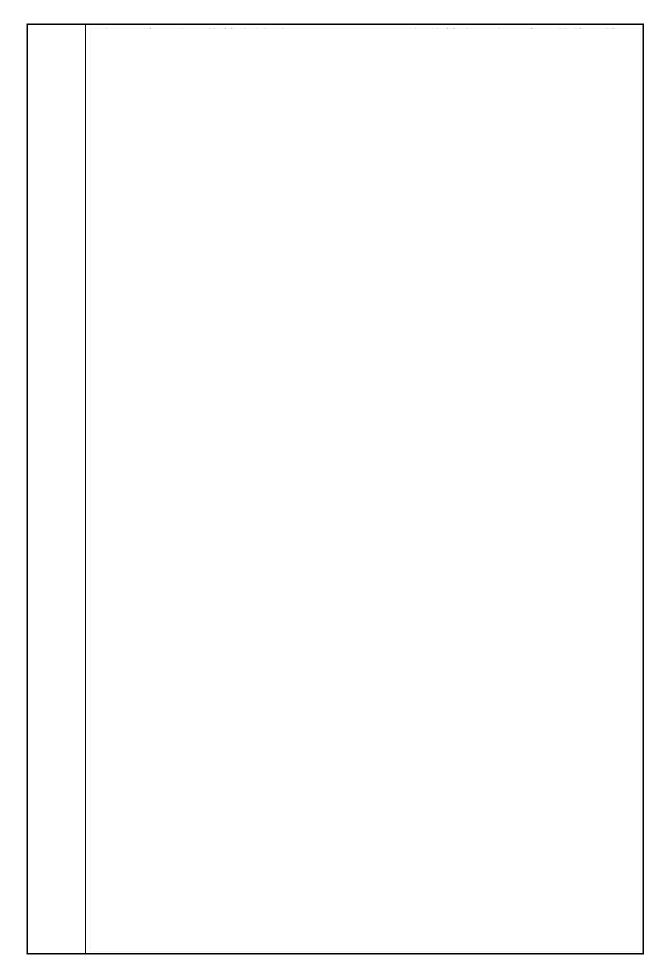

#### (1) 施工人员生活垃圾


本工程施工高峰期约为 60 人,按施工人员人均生活垃圾产生量 1.0kg/人•d 计,施工期高峰日均生活垃圾产生量为 0.06t/d。若不对施工人员生活垃圾采取处理措施,将会对周边环境造成影响,尤其是一些白色污染垃圾将对环境产生较长时期的影响,难以消除。通过集中收集后定期交由当地环卫部门清运,可以有效避免生活垃圾对环境的影响。


#### (2) 施工场地建筑垃圾


本工程施工场地建筑垃圾主要是施工中建筑模板、废钢料、废包装物、 建筑碎片、水泥块、砂石子、废木板等。如果施工场地建筑垃圾随意丢弃将 会对河岸沿线生态环境和河流水质环境造成较大的影响。评价建议对施工场














感点的影响。同时在建设过程中,施工单位应树立警示牌,告知沿线附近有 道路施工,避免发生安全事故。

#### (2) 对当地居民生活的影响

本工程施工期间,可能使交通受到干扰,这将给当地居民的出行、工作、生活以及涉及的企业正常生产带来影响及不便,同时施工引起的噪声、扬尘等对沿线环境的影响。本评价建议采取分流、绕行等临时措施,在施工过程中加大环保治理措施,可减缓对沿线居民及企业正常生产的影响。

## 1、水环境环境影响分析

本工程运营期无废水产生,不会对区域水环境产生影响。

2、大气环境影响分析

本工程运营期无废气产生,不会对区域大气环境产生影响。

3、声环境影响分析

本工程运营期无噪声产生,不会对区域声环境产生影响。

4、固体废物分析

本工程运营期无固体废物产生,不会对周边环境产生影响。

5、生态环境影响分析

由于本防洪工程的建设,使区域河段护岸功能得以修复,可以有效阻止洪水泛滥对河岸两侧生态系统的破坏,防止洪水对两侧岸堤的河岸冲刷,有效减少了水土流失量。因此不会造成沿线区域植物种类的减少,更不会使植物区系发生改变。同时通过景观绿化工程,在一定程度上可弥补工程建设对沿线植被生产力的影响。

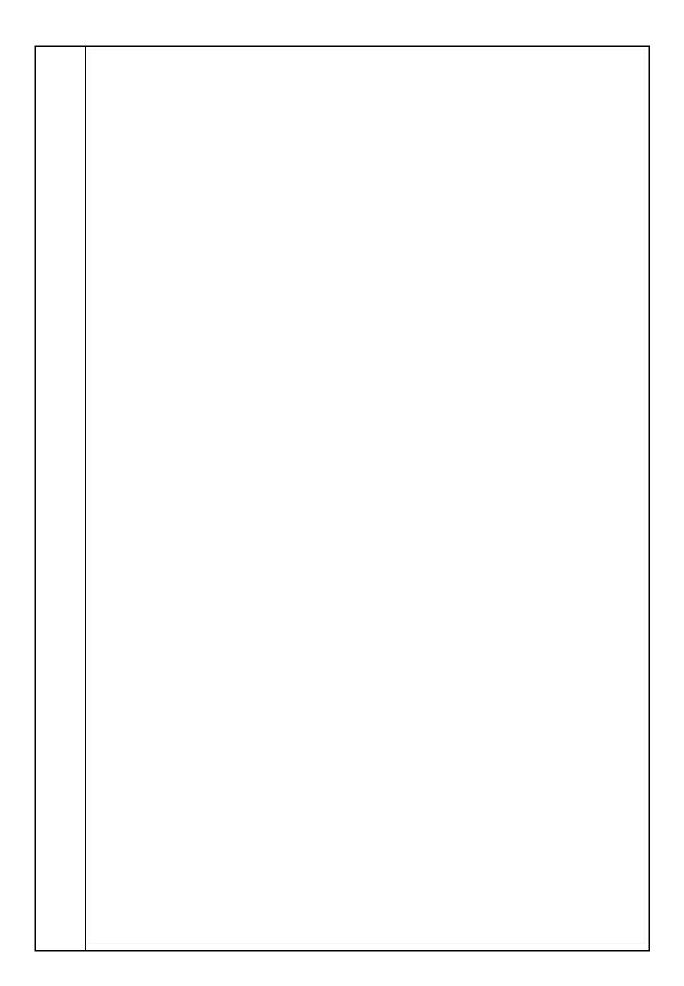
#### 6、对社会经济的影响

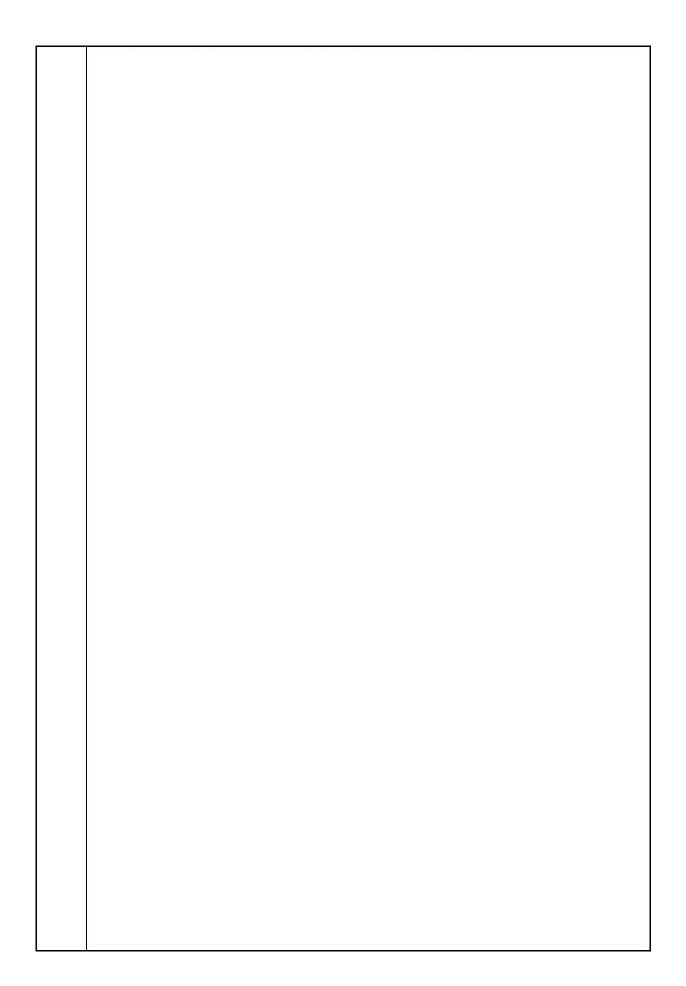
本工程建成后将提高堤防洪标准,提高区域防洪能力,对保障沿线社会 经济可持续发展将产生积极的作用。

选选环合性析

本工程属于防洪工程,用地面积约为 27.7 亩,其中农用地 9.9 亩(含耕地 6.9 亩)、建设用地 1.5 亩、未利用地 16.3 亩,项目选址不涉及永久基本农田和生态保护红线,周围无自然保护区、风景名胜区、世界文化和自然遗产地、饮用水水源保护区等特殊敏感区以及重点保护野生动物栖息地和重点保护野生植物生长繁殖地,由此可知,该范围符合信丰县古陂镇总体规划,本工程选线合理。

运营期


生态环


境影响 分析

# 五、主要生态环境保护措施

| 施期态境护施工生环保措 |  |  |  |
|-------------|--|--|--|
| 施期态境护施工生环保措 |  |  |  |
|             |  |  |  |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br> |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1 | TI Company of the Com |      |





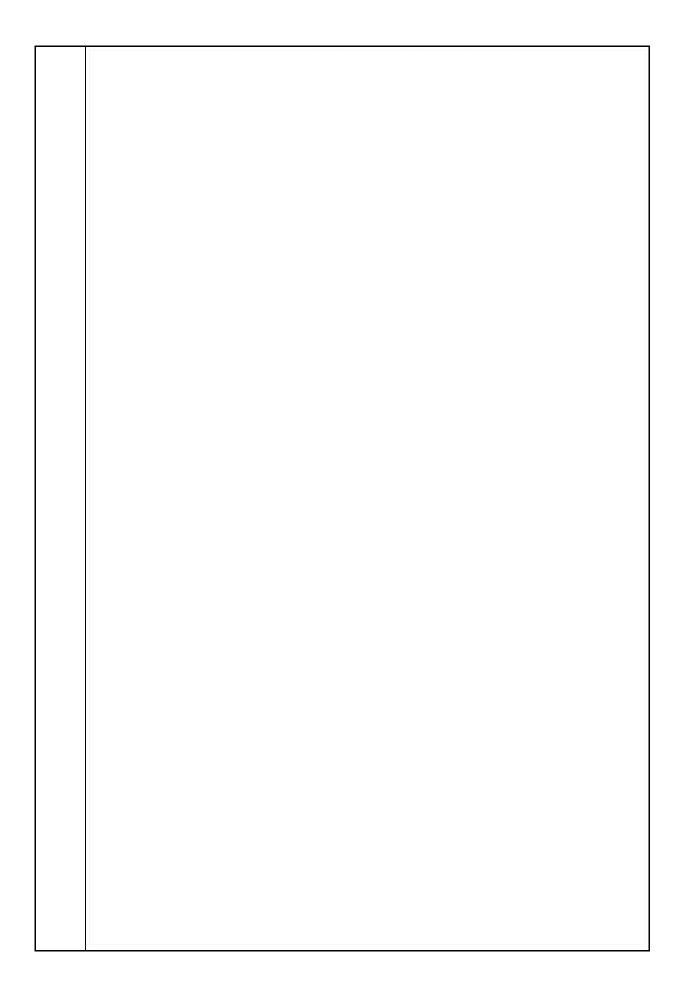
截坡面径流,防止坡面径流对渣体的冲刷,控制临时堆场的占地面积和堆放量。对于堆渣边坡马道内侧设置排水系统,由于受工程区地形条件限制,在实际堆渣过程中,机械难以对堆渣体进行分层碾压,堆渣过程中堆渣体一般采用自然沉降,堆渣边坡马道不宜布置浆砌石排水沟,堆渣过程中,严格执行堆渣顺序,控制堆渣边坡,并做好堆渣坡面的水土流失防治,坡面撒播草籽。堆渣结束后,根据工程的实际施工情况,进行植树造林或复耕。施工弃土弃渣不得任意堆放,不得随意堆置或倾入河流。根据赣州市水利电力勘测设计研究院2022年9月编制的《信丰县古陂镇防洪工程初步设计报告(报批稿)》可知,本工程开挖、疏浚料全部用于回填沿岸洼地,无弃渣外运。

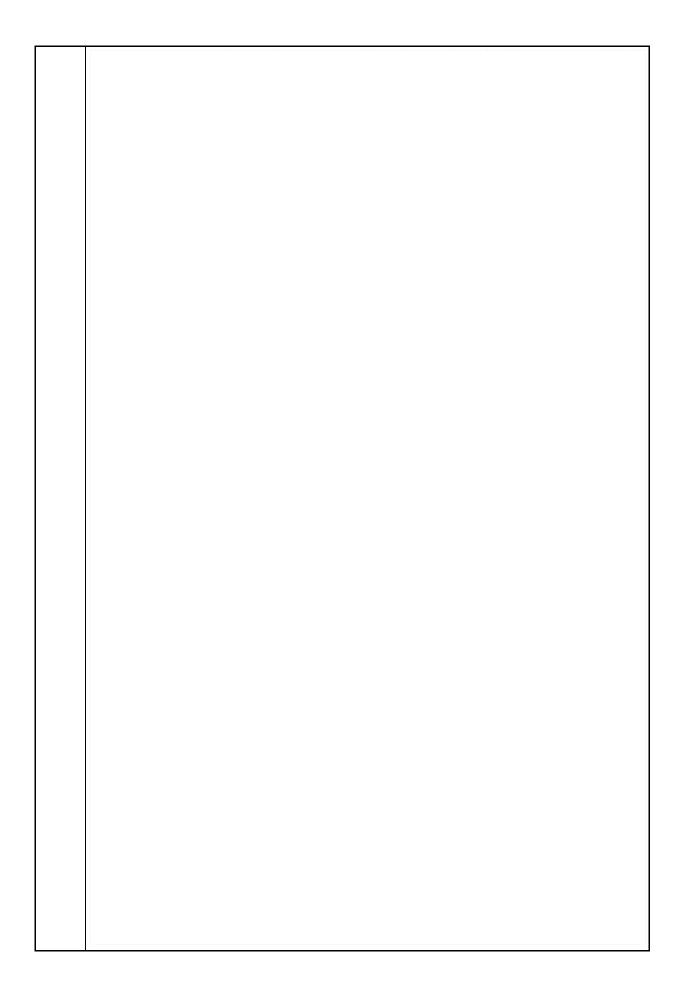
- ③施工沉淀池产生的沉淀泥渣通过定期清运用于堤后回填区做回填料。
- (2) 施工人员生活垃圾拟采用的处理处置措施。

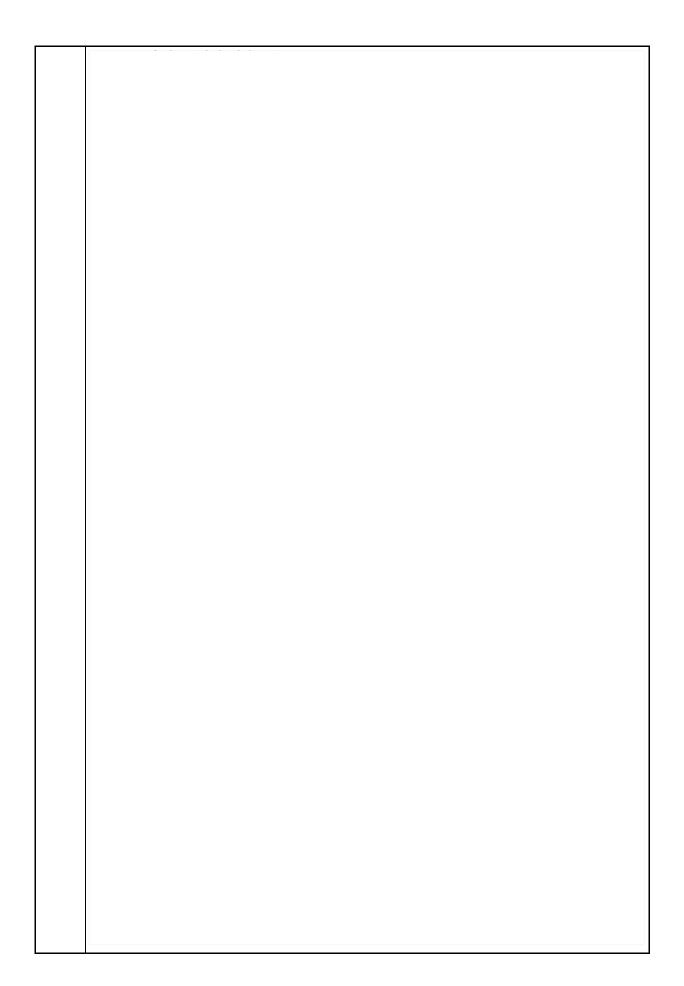
本工程施工期生活垃圾可充分利用工程所在地附近的环卫垃圾处理设施, 生活垃圾经由当地环卫工人收集后,纳入临近的垃圾处理系统,由环卫部门及 时运往垃圾填埋场。

## (3) 原料临时堆存场地的管理

施工阶段应妥善保管建筑材料,使其远离水体,并在原料临时堆存场地设置临时遮挡帆布,避免被暴雨冲刷进入水体污染水质。


#### 5、生态保护措施


本工程施工的生态影响方面主要体现在工程施工占地、开挖等施工活动对沿线的土地、植被造成一定的影响和破坏,使局部地区表土失去防冲固土能力造成的水土流失,以及对水生动植物、陆生动植物的影响。形成的开挖裸露面,若未能及时采取措施处理,使施工区与整个区域环境不协调,产生一定负面影响,但是施工期的破坏是暂时性的,工程完成后通过土地复垦植被能够逐渐恢复。


#### (1) 工程占地的环境保护措施

本工程施工结束后,对临时占地进行平整恢复成相应原土地,大大减小工程施工对土地资源的影响。经过清理、整治,基本可恢复其原有功能,临时占地对土地利用功能的影响相对来讲是较小的。

为减少项目施工对周边生态环境的影响,本次评价要求施工时须严格执行







|   | - <del> </del> |
|---|----------------|
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
| I |                |
| 1 |                |
| I |                |
| I |                |
|   |                |
| I |                |
| I |                |
| I |                |
| I |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
| I |                |
| I |                |
|   |                |
|   |                |
| I |                |
|   |                |
|   |                |
| 1 |                |
|   |                |
| 1 |                |
| I |                |
|   |                |
| I |                |
|   |                |
| I |                |
| I |                |
|   |                |
| I |                |
|   |                |
| I |                |
| I |                |
|   |                |
| 1 |                |
|   |                |
| I |                |
|   |                |
|   |                |
| I |                |
|   |                |
| I |                |
|   |                |
|   |                |

## 施工临时场地及临时道路土质排水沟

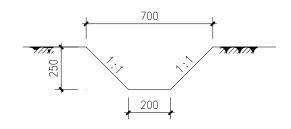
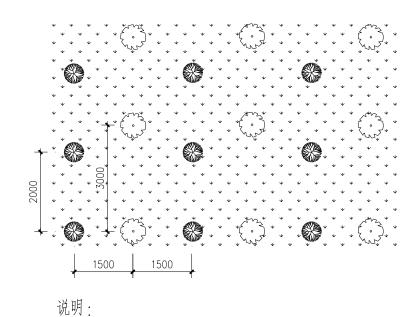
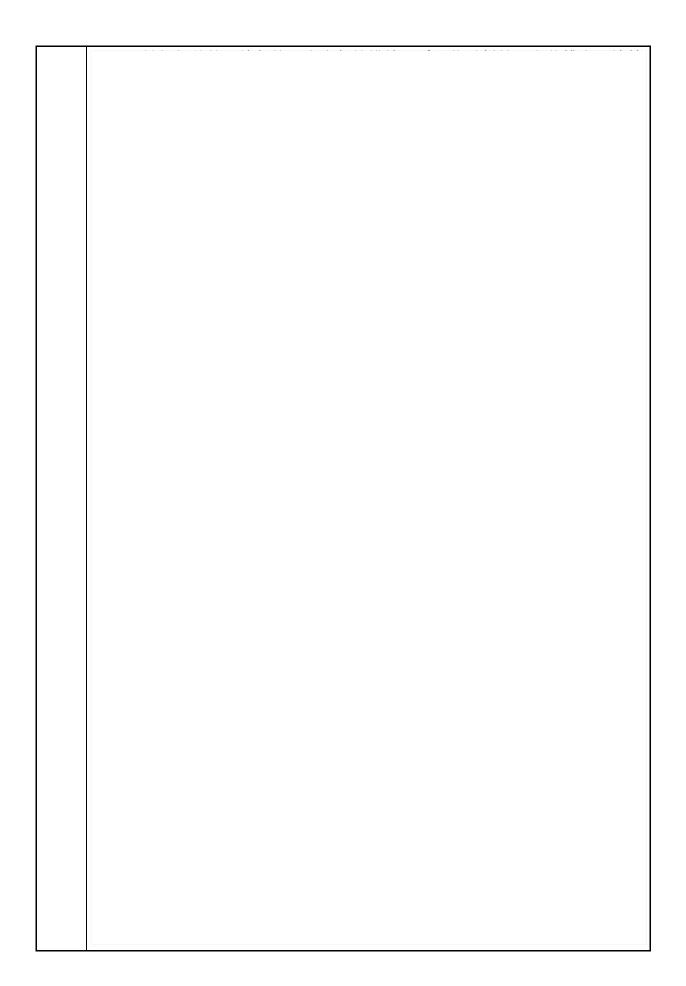




图 5-1 土质排水沟和临时挡土墙断面图

## 造林典型设计林立面图



## 造林平面图




图中符号分别表示: 尽 ○ 湿地松 ♀ め枝子 ヾ [.\*.\*] 草

图 5-2 水土保持林典型设计图

## 6、风险防范措施

针对可能发生的河道水体水质污染和生态风险事故,评价建议采取以下防范措施:



还应向当地生态环境行政主管部门和建设主管部门进行申报,设立专人负责管理,培训工作人员。

(2) 环境监测计划

根据本工程情况,评价建议制定工程施工期环境监测计划如下:

①施工期环境噪声监测计划布点:施工场界;

监测项目: 昼间和夜间等效连续 A 声级;

监测点位:施工区附近受噪声影响较大的具有代表性敏感点处设置 2~3 个监测点。

监测时间和频次:施工期每个月一次,昼间各1次/月;

监测方法:按照《环境监测技术规范》及《声环境质量标准》(GB3096-2008)的规定方法执行。

②施工期大气环境监测计划断面布点:施工场界;

监测项目: TSP;

监测点位:在河段距施工区最近居民点设一个监测点,监测点布置在距离施工区较近,受扬尘影响较大处。

监测频次:施工进场前监测1次,施工高峰期监测1次,共计2次;

监测和分析方法:按照《环境空气质量自动监测技术规范》(HJ/T193—2005)和《环境空气质量手动监测技术规范》(HJ/T194—2005)中的相关规定和要求执行。

运期态境护 施营生环保措

本工程为防洪工程,属于非污染型生态类建设项目,运行期不会产生废水、废气、噪声及固体废物,不会对环境产生污染。运行期通过加强管理,禁止河道挖沙活动,禁止破坏河岸植被,禁止捕猎周边动物等措施,避免对生态环境造成破坏。

#### 1、施工期环境管理

### (1) 管理职责

依据《水利部关于印发水利工程建设项目法人管理指导意见的通知》(水建设〔2020〕258号),工程法人应负责监督参建单位建设管理环境保护措施落实等情况。工程法人应落实各项环境管理职责,如负责确定环保方针、审查工程环境目标和指标、审批环保工程实施方案和管理方案、检查环境管理业绩、培养员工环境意识等工作。

工程法人环境管理主要职责包括:

- 1)负责工程的日常环境管理工作,接受所在地各级生态环境部门的监督、检查和指导。
- 2) 贯彻执行国家环境保护方针、政策、法律、法规及技术标准,编制环境管理方案,作好环境工作内部审查,管理环保文档等。
- 3)参与工程建设的各有关施工单位内部应视具体情况,建立相应的环境 保护机构或指定专门人员负责本单位施工过程中的环境保护工作。

## (2) 管理任务

- 1) 贯彻执行国家有关环境保护方针、政策及法规条例;
- 2)制定工程建设环境保护工作计划并组织实施,监督、检查环境保护措施的执行情况和环保经费的使用情况;
- 3)加强工程环境监测管理,审定监测计划,委托具有相应资质的检测单位实施环境监测计划;
- 4)加强工程建设环境监理,委托有相应监理资质单位对施工区进行工程建设环境监理;
  - 5)协调处理工程引起的环境污染事故和环境纠纷;
- 6)加强环境保护的宣传教育和技术培训,提高人们的环境保护意识参与 意识,工程环境管理人员的技术水平。
  - 2、施工期环境监理

根据《水利工程建设监理规定》(2017年修正本),工程应依法委托指具有相应资质的水利工程建设监理单位实行环境保护监理。

- (1) 环境监理的目的和任务
- 1)环境监理的目的

其他

实施环境监理的目的是使施工现场的环境监督、管理责任分明,目标明确,并贯穿于整个工程实施过程中,对水利工程建设工程实施中产生的废(污)水、垃圾、废渣、废气、粉尘、噪声等采取的防治措施所进行的管理。

### 2) 环境监理的任务

环境监理工程师受建设单位的委托,主要在工程建设过程中对所有实施环 保工程的专业部门及工程承包商的环境保护工作进行监督、检查、管理。

工程建设环境监理的任务包括:

①质量控制:按照国家或地方环境标准和招标文件中的环境保护条款,根据建设单位要求,在工程施工期间通过现场监督等工作,监理承包商如何履行合同规定,防止生态破坏,水污染、空气污染、噪声污染等环保条款的要求,并及时处理工程施工中出现的环境问题。

②信息管理:及时了解和收集掌握施工区各类信息,并对信息进行分类、 反馈、处理和储存管理,便于监理决策和协调工程建设各有关参与方的环境保 护工作;及时掌握工程区环境状况,解决施工过程中造成的环境纠纷;对工程 承包商的环境月报、季报进行审核,提出审查、修改意见。

③组织协调工作:对环境工程建设质量、施工进度、投资的合理使用、环保设施运行等进行监督管理,确保各项措施落到实处,发挥实效;此外,还应协调业主与承包商、设计方、建设单位之间的关系。

### (2) 环境监理的内容

遵循国家及当地政府关于环境保护的方针、政策、法令、法规,监督承包 商落实工程承包合同中有关环保条款。主要职责为:

- 1)编制环境监理计划,拟定环境监理工程和内容。
- 2)对承包商进行监理,防止和减轻施工作业引起的环境污染和对植被、 野生动植物的破坏行为。
- 3)全面监督和检查各施工单位环境保护措施实施情况和实施效果,及时 处理和解决临时出现的环境污染事件。
- 4)全面检查施工单位负责的渣场、施工迹地的处理及恢复情况,主要包括边坡稳定、迹地恢复和绿化措施及效果等。
- 5)负责落实环境监测的实施,审核有关环境报表,根据水质、大气、噪声等监测结果,对各工程施工及管理提出相应要求,尽量减少工程施工给环境

带来的不利影响。

6) 在日常工作中作好监理记录及监理报告。

本工程总投资 938.42 万元,其中环保投资估算为 23.64 万元,约占工程总 投资的 2.52%,环保投资详见表 5-2。

表 5-2 本工程环保投资一览表

| 阶<br>段 | 内容   | 环保措施             | 投资(万<br>元) |
|--------|------|------------------|------------|
|        | 废水治理 | 中和池、隔油池、沉淀池      | 4          |
| 施      | 废气治理 | 设置围挡、洒水设施、帆布覆盖   | 2          |
| 工      | 噪声治理 | 施工机械维护及临时声屏障     | 1.36       |
| 期      | 固废治理 | 建筑垃圾、施工弃土石方      | 7          |
|        | 生态治理 | 修筑挡土墙、护坡、绿化、水土保持 | 9.28       |
| 营      |      |                  |            |
| 运      | /    | /                | /          |
| 期      |      |                  |            |
| 合计     |      |                  | 23.64      |

环保 投资

# 六、生态环境保护措施监督检查清单

| 内容           | 内容 施工期                                                                                                                                      |                                                           | 运营期        |             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|-------------|
| 要素           | 环境保护措施                                                                                                                                      | 验收要求                                                      | 环境保<br>护措施 | 验收要求        |
| 陆生生态         | ①表层土剥离进行留存;②<br>限定施工区域;③按规定保护国家野生动植物;④临时用地要及时土地复垦;⑤对迹地恢复绿化。                                                                                 | 是否按要求履行                                                   | 加强管<br>理   | 无陆生生<br>态破坏 |
| 水生生态         | 宣传教育设置警示牌,严禁 在河段内捕鱼、枯水期采用 围堰施工减少水体扰动、合理安排施工时间减少噪声对 水生生物影响,设计生态护岸。                                                                           | 是否按要求履行                                                   | 加强管理       | 无水生生<br>态破坏 |
| 地表水环境        | ①施工生活污水通过依托租<br>用化粪池处理后,用作周边<br>农田的肥料,施工废水设置<br>隔油、中和、沉淀池收集处<br>理设施处理后回用,不外<br>排。②选择枯水期施工,采<br>取截断围堰的施工方式分段<br>进行施工,同时避开雨期施<br>工            | 是否按要求履行                                                   | /          | /           |
| 地下水及土壤<br>环境 | /                                                                                                                                           | /                                                         | /          | /           |
| 声环境          | 合理布局施工现场、合理安排施工时间、设置临时施工<br>噪声隔声屏障、加强施工环<br>境管理                                                                                             | 满足《建筑施工<br>场界环境噪声排<br>放限值》<br>(GB12523-<br>2011)中排放标<br>准 | /          | /           |
| 振动           | /                                                                                                                                           | /                                                         | /          | /           |
| 大气环境         | ①设置洒水抑尘设施; ②工地周边围挡; ③施工现场地面硬化,出入车辆冲洗; ④物料堆放遮盖; ⑤混凝土搅拌场所需设置除尘设施,骨料堆场采取置除尘设施,骨料堆场采取。盖、洒水等防尘措施; ⑥渣土车辆实行遮盖,不得超载。 ⑦施工机械设备和柴油发电机安装尾气净化器,不得使用劣质燃料。 | 满足《大气污染物综合排放标准》( GB16297-1996)表 2 无组织排放监控浓度限值             | /          | /           |

| 固体废物 | ①建筑垃圾运至指定地点或<br>垃圾填埋场作填埋处理,用<br>证圾填埋场作表土整方,<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一个大型。<br>一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | 处置合理, 去向<br>明确                                                                                                         | / | / |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---|---|
| 电磁环境 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /                                                                                                                      | / | / |
| 环境风险 | ①采取临时拦挡、完善排水<br>设施等减轻水土流失给河置<br>带来减轻水土流失给置配<br>套规模的环境影响;②设泄配<br>套规模的中和池、隔全部池<br>沉淀池收集处理后全部地<br>用,严禁排入河强施工管主<br>水环境;③加强施工管理,<br>确保施工运输车辆安全理,<br>确保施工运输车期的管理,<br>现场严禁设置油罐;⑤不在<br>施工现场对施工机械设备进<br>行维修保养;⑥加强机械设<br>备的管理与维护。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 是否按要求履行                                                                                                                | / | / |
| 环境监测 | 按照施工期噪声、TSP 监测<br>计划实施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 满足《建筑施工<br>场界环境噪声排<br>放限值》<br>(GB12523-<br>2011)中排放标<br>准和《大气污染<br>物综合排放标准》<br>(GB16297-<br>1996)表2无组<br>织排放监控浓度<br>限值 | / | / |
| # 44 | 水土保持: 植物措施和临时<br>措施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 是否按要求设置                                                                                                                | / | / |
| 其他   | 临时占地: 平整后植被恢复                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 是否按要求履行                                                                                                                | / | / |

# 七、结论

| 综上所述,本工程的建设符合国家及地方产业政策要求,工程选址合理,工程区   |
|---------------------------------------|
| 域环境空气质量、地表水和声环境质量现状总体良好,工程采取的各项污染防治措施 |
| 技术可行,能够做到达标排放,不会对评价区域环境质量产生明显影响,工程的建设 |
| 对当地具有显著的环境效益和社会效益,因此本评价认为,只要建设单位严格执行  |
| "三同时"制度,认真落实报告表中提出的各项污染防治措施的前提下,从环境保护 |
| <br>  角度分析,本工程的建设是可行的。                |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |